首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

2.
This paper describes inference methods for functional data under the assumption that the functional data of interest are smooth latent functions, characterized by a Gaussian process, which have been observed with noise over a finite set of time points. The methods we propose are completely specified in a Bayesian environment that allows for all inferences to be performed through a simple Gibbs sampler. Our main focus is in estimating and describing uncertainty in the covariance function. However, these models also encompass functional data estimation, functional regression where the predictors are latent functions, and an automatic approach to smoothing parameter selection. Furthermore, these models require minimal assumptions on the data structure as the time points for observations do not need to be equally spaced, the number and placement of observations are allowed to vary among functions, and special treatment is not required when the number of functional observations is less than the dimensionality of those observations. We illustrate the effectiveness of these models in estimating latent functional data, capturing variation in the functional covariance estimate, and in selecting appropriate smoothing parameters in both a simulation study and a regression analysis of medfly fertility data.  相似文献   

3.
An extended single‐index model is considered when responses are missing at random. A three‐step estimation procedure is developed to define an estimator for the single‐index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An algorithm for computing this estimator is proposed. This algorithm only involves one‐dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Some simulation studies are conducted to investigate the finite sample performances of the proposed estimators.  相似文献   

4.
The authors consider a class of state space models for the analysis of non‐normal longitudinal data whose latent process follows a stationary AR(1) model with exponential dispersion model margins. They propose to estimate parameters through an estimating equation approach based on the Kalman smoother. This allows them to carry out a straightforward analysis of a wide range of non‐normal data. They illustrate their approach via a simulation study and through analyses of Brazilian precipitation and US polio infection data.  相似文献   

5.
We propose a latent variable model for informative missingness in longitudinal studies which is an extension of latent dropout class model. In our model, the value of the latent variable is affected by the missingness pattern and it is also used as a covariate in modeling the longitudinal response. So the latent variable links the longitudinal response and the missingness process. In our model, the latent variable is continuous instead of categorical and we assume that it is from a normal distribution. The EM algorithm is used to obtain the estimates of the parameter we are interested in and Gauss–Hermite quadrature is used to approximate the integration of the latent variable. The standard errors of the parameter estimates can be obtained from the bootstrap method or from the inverse of the Fisher information matrix of the final marginal likelihood. Comparisons are made to the mixed model and complete-case analysis in terms of a clinical trial dataset, which is Weight Gain Prevention among Women (WGPW) study. We use the generalized Pearson residuals to assess the fit of the proposed latent variable model.  相似文献   

6.
ABSTRACT

This work presents advanced computational aspects of a new method for changepoint detection on spatio-temporal point process data. We summarize the methodology, based on building a Bayesian hierarchical model for the data and declaring prior conjectures on the number and positions of the changepoints, and show how to take decisions regarding the acceptance of potential changepoints. The focus of this work is about choosing an approach that detects the correct changepoint and delivers smooth reliable estimates in a feasible computational time; we propose Bayesian P-splines as a suitable tool for managing spatial variation, both under a computational and a model fitting performance perspective. The main computational challenges are outlined and a solution involving parallel computing in R is proposed and tested on a simulation study. An application is also presented on a data set of seismic events in Italy over the last 20 years.  相似文献   

7.

Ordinal data are often modeled using a continuous latent response distribution, which is partially observed through windows of adjacent intervals defined by cutpoints. In this paper we propose the beta distribution as a model for the latent response. The beta distribution has several advantages over the other common distributions used, e.g. , normal and logistic. In particular, it enables separate modeling of location and dispersion effects which is essential in the Taguchi method of robust design. First, we study the problem of estimating the location and dispersion parameters of a single beta distribution (representing a single treatment) from ordinal data assuming known equispaced cutpoints. Two methods of estimation are compared: the maximum likelihood method and the method of moments. Two methods of treating the data are considered: in raw discrete form and in smoothed continuousized form. A large scale simulation study is carried out to compare the different methods. The mean square errors of the estimates are obtained under a variety of parameter configurations. Comparisons are made based on the ratios of the mean square errors (called the relative efficiencies). No method is universally the best, but the maximum likelihood method using continuousized data is found to perform generally well, especially for estimating the dispersion parameter. This method is also computationally much faster than the other methods and does not experience convergence difficulties in case of sparse or empty cells. Next, the problem of estimating unknown cutpoints is addressed. Here the multiple treatments setup is considered since in an actual application, cutpoints are common to all treatments, and must be estimated from all the data. A two-step iterative algorithm is proposed for estimating the location and dispersion parameters of the treatments, and the cutpoints. The proposed beta model and McCullagh's (1980) proportional odds model are compared by fitting them to two real data sets.  相似文献   

8.
Linear mixed models are regularly applied to animal and plant breeding data to evaluate genetic potential. Residual maximum likelihood (REML) is the preferred method for estimating variance parameters associated with this type of model. Typically an iterative algorithm is required for the estimation of variance parameters. Two algorithms which can be used for this purpose are the expectation‐maximisation (EM) algorithm and the parameter expanded EM (PX‐EM) algorithm. Both, particularly the EM algorithm, can be slow to converge when compared to a Newton‐Raphson type scheme such as the average information (AI) algorithm. The EM and PX‐EM algorithms require specification of the complete data, including the incomplete and missing data. We consider a new incomplete data specification based on a conditional derivation of REML. We illustrate the use of the resulting new algorithm through two examples: a sire model for lamb weight data and a balanced incomplete block soybean variety trial. In the cases where the AI algorithm failed, a REML PX‐EM based on the new incomplete data specification converged in 28% to 30% fewer iterations than the alternative REML PX‐EM specification. For the soybean example a REML EM algorithm using the new specification converged in fewer iterations than the current standard specification of a REML PX‐EM algorithm. The new specification integrates linear mixed models, Henderson's mixed model equations, REML and the REML EM algorithm into a cohesive framework.  相似文献   

9.
The expectation maximization (EM) algorithm is a widely used parameter approach for estimating the parameters of multivariate multinomial mixtures in a latent class model. However, this approach has unsatisfactory computing efficiency. This study proposes a fuzzy clustering algorithm (FCA) based on both the maximum penalized likelihood (MPL) for the latent class model and the modified penalty fuzzy c-means (PFCM) for normal mixtures. Numerical examples confirm that the FCA-MPL algorithm is more efficient (that is, requires fewer iterations) and more computationally effective (measured by the approximate relative ratio of accurate classification) than the EM algorithm.  相似文献   

10.
Abstract: The authors address the problem of estimating an inter‐event distribution on the basis of count data. They derive a nonparametric maximum likelihood estimate of the inter‐event distribution utilizing the EM algorithm both in the case of an ordinary renewal process and in the case of an equilibrium renewal process. In the latter case, the iterative estimation procedure follows the basic scheme proposed by Vardi for estimating an inter‐event distribution on the basis of time‐interval data; it combines the outputs of the E‐step corresponding to the inter‐event distribution and to the length‐biased distribution. The authors also investigate a penalized likelihood approach to provide the proposed estimation procedure with regularization capabilities. They evaluate the practical estimation procedure using simulated count data and apply it to real count data representing the elongation of coffee‐tree leafy axes.  相似文献   

11.
Abstract. Longitudinal data frequently occur in many studies, and longitudinal responses may be correlated with observation times. In this paper, we propose a new joint modelling for the analysis of longitudinal data with time‐dependent covariates and possibly informative observation times via two latent variables. For inference about regression parameters, estimating equation approaches are developed and asymptotic properties of the proposed estimators are established. In addition, a lack‐of‐fit test is presented for assessing the adequacy of the model. The proposed method performs well in finite‐sample simulation studies, and an application to a bladder tumour study is provided.  相似文献   

12.
We propose new ensemble approaches to estimate the population mean for missing response data with fully observed auxiliary variables. We first compress the working models according to their categories through a weighted average, where the weights are proportional to the square of the least‐squares coefficients of model refitting. Based on the compressed values, we develop two ensemble frameworks, under which one is to adjust weights in the inverse probability weighting procedure and the other is built upon an additive structure by reformulating the augmented inverse probability weighting function. The asymptotic normality property is established for the proposed estimators through the theory of estimating functions with plugged‐in nuisance parameter estimates. Simulation studies show that the new proposals have substantial advantages over existing ones for small sample sizes, and an acquired immune deficiency syndrome data example is used for illustration.  相似文献   

13.
Probabilistic Principal Component Analysis   总被引:2,自引:0,他引:2  
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based on a probability model. We demonstrate how the principal axes of a set of observed data vectors may be determined through maximum likelihood estimation of parameters in a latent variable model that is closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach to PCA.  相似文献   

14.
We consider Bayesian analysis of a class of multiple changepoint models. While there are a variety of efficient ways to analyse these models if the parameters associated with each segment are independent, there are few general approaches for models where the parameters are dependent. Under the assumption that the dependence is Markov, we propose an efficient online algorithm for sampling from an approximation to the posterior distribution of the number and position of the changepoints. In a simulation study, we show that the approximation introduced is negligible. We illustrate the power of our approach through fitting piecewise polynomial models to data, under a model which allows for either continuity or discontinuity of the underlying curve at each changepoint. This method is competitive with, or outperform, other methods for inferring curves from noisy data; and uniquely it allows for inference of the locations of discontinuities in the underlying curve.  相似文献   

15.
A folded type model is developed for analysing compositional data. The proposed model involves an extension of the α‐transformation for compositional data and provides a new and flexible class of distributions for modelling data defined on the simplex sample space. Despite its rather seemingly complex structure, employment of the EM algorithm guarantees efficient parameter estimation. The model is validated through simulation studies and examples which illustrate that the proposed model performs better in terms of capturing the data structure, when compared to the popular logistic normal distribution, and can be advantageous over a similar model without folding.  相似文献   

16.
Time series of counts occur in many different contexts, the counts being usually of certain events or objects in specified time intervals. In this paper we introduce a model called parameter-driven state-space model to analyse integer-valued time series data. A key property of such model is that the distribution of the observed count data is independent, conditional on the latent process, although the observations are correlated marginally. Our simulation shows that the Monte Carlo Expectation Maximization (MCEM) algorithm and the particle method are useful for the parameter estimation of the proposed model. In the application to Malaysia dengue data, our model fits better when compared with several other models including that of Yang et al. (2015)  相似文献   

17.
The Buckley–James (BJ) estimator is known to be consistent and efficient for a linear regression model with censored data. However, its application in practice is handicapped by the lack of a reliable numerical algorithm for finding the solution. For a given data set, the iterative approach may yield multiple solutions, or no solution at all. To alleviate this problem, we modify the induced smoothing approach originally proposed in 2005 by Brown & Wang. The resulting estimating functions become smooth, thus eliminating the tendency of the iterative procedure to oscillate between different parameter values. In addition to facilitating point estimation the smoothing approach enables easy evaluation of the projection matrix, thus providing a means of calculating standard errors. Extensive simulation studies were carried out to evaluate the performance of different estimators. In general, smoothing greatly alleviates numerical issues that arise in the estimation process. In particular, the one‐step smoothing estimator eliminates non‐convergence problems and performs similarly to full iteration until convergence. The proposed estimation procedure is illustrated using a dataset from a multiple myeloma study.  相似文献   

18.
Summary.  The reciprocal of serum creatinine concentration, RC, is often used as a biomarker to monitor renal function. It has been observed that RC trajectories remain relatively stable after transplantation until a certain moment, when an irreversible decrease in the RC levels occurs. This decreasing trend commonly precedes failure of a graft. Two subsets of individuals can be distinguished according to their RC trajectories: a subset of individuals having stable RC levels and a subset of individuals who present an irrevocable decrease in their RC levels. To describe such data, the paper proposes a joint latent class model for longitudinal and survival data with two latent classes. RC trajectories within latent class one are modelled by an intercept-only random-effects model and RC trajectories within latent class two are modelled by a segmented random changepoint model. A Bayesian approach is used to fit this joint model to data from patients who had their first kidney transplantation in the Leiden University Medical Center between 1983 and 2002. The resulting model describes the kidney transplantation data very well and provides better predictions of the time to failure than other joint and survival models.  相似文献   

19.
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.  相似文献   

20.
The Reed-Frost epidemic model is a simple stochastic process with parameter q that describes the spread of an infectious disease among a closed population. Given data on the final outcome of an epidemic, it is possible to perform Bayesian inference for q using a simple Gibbs sampler algorithm. In this paper it is illustrated that by choosing latent variables appropriately, certain monotonicity properties hold which facilitate the use of a perfect simulation algorithm. The methods are applied to real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号