首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum variance unbiased estimators (MVUEs) of the parameters for various distributions are extensively studied under ranked set sampling (RSS). However, the results in existing literatures are only locally MVUEs, i.e. the MVUE in a class of some unbiased estimators is obtained. In this paper, the global MVUE of the parameter in a truncated parameter family is obtained, that is to say, it is the MVUE in the class of all unbiased estimators. Firstly we find the optimal RSS according to the character of a truncated parameter family, i.e. arrange RSS based on complete and sufficient statistics of independent and identically distributed samples. Then under this RSS, the global MVUE of the parameter in a truncated parameter family is found. Numerical simulations for some usual distributions in this family fully support the result from the above two-step optimizations. A real data set is used for illustration.  相似文献   

2.
We consider an inhomogeneous Poisson process X on [0, T]. The intensity function of X is supposed to be strictly positive and smooth on [0, T] except at the point θ, in which it has either a 0-type singularity (tends to 0 like |x| p , p∈(0, 1)), or an ∞-type singularity (tends to ∞ like |x| p , p∈(?1, 0)). We suppose that we know the shape of the intensity function, but not the location of the singularity. We consider the problem of estimation of this location (shift) parameter θ based on n observations of the process X. We study the Bayesian estimators and, in the case p>0, the maximum-likelihood estimator. We show that these estimators are consistent, their rate of convergence is n 1/(p+1), they have different limit distributions, and the Bayesian estimators are asymptotically efficient.  相似文献   

3.
LetX 1,…,X p be p(≥2)independent random variables, where each X.has a distribution belonging to a one parameter truncated power series

distribution. The problem is to estimate simultaneously the unknown parameters under asymmetric loss developed by James and Stein (Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1, 361-380). Several new classes of dominating estimators are obtained by solving a certain difference inequality.  相似文献   

4.
This paper considers estimation of β in the regression model y =+μ, where the error components in μ have the jointly multivariate Student-t distribution. A family of James-Stein type estimators (characterised by nonstochastic scalars) is presented. Sufficient conditions involving only X are given, under which these estimators are better (with respect to the risk under a general quadratic loss function) than the usual minimum variance unbiased estimator (MVUE) of β. Approximate expressions for the bias, the risk, the mean square error matrix and the variance-covariance matrix for the estimators in this family are obtained. A necessary and sufficient condition for the dominance of this family over MVUE is also given.  相似文献   

5.
A new core methodology for creating nonparametric L-quantile estimators is introduced and three new quantile L-estimators (SV1 p , SV2 p , and SV3 p ) are constructed using the new methodology. Monte Carlo simulation was used in order to investigate the performance of the new estimators for small and large samples under normal distribution and a variety of light and heavy-tailed symmetric and asymmetric distributions. The new estimators outperform, in most of the cases studied, the Harrell–Davis quantile estimator and the weighted average at X ([np]) quantile estimator.  相似文献   

6.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

7.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

8.
A sequence of independent lifetimes X 1, X 2,…, X m , X m+1,…, X n were observed from the mixture of a degenerate and left-truncated exponential (LTE) distribution, with reliability R at time τ and minimum life length η with unknown proportion p 1 and θ1 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after X m by change in reliability R at time τ and unknown proportion p 2 and θ2. This distribution occurs in many practical situations, for instance; life of a unit may have a LTE distribution but some of the units fail instantaneously. Apart from mixture distributions, the phenomenon of change point is also observed in several situations in life testing and reliability estimation problems. It may happen that at some point of time instability in the sequence of failure times is observed. The problem of study is: When and where this change has started occurring. This is called change point inference problem. The estimators of m, R 1(t 0), R 2(t 0), p 1, and p 2 are derived under asymmetric loss functions namely Linex loss & general entropy loss functions. Both the non informative and informative prior are considered. The effects of prior consideration on Bayes estimates of change point are also studied.  相似文献   

9.
Given a Wishart matrix S [SWp(n, Σ)] and an independent multinomial vector X [X ∽ Np (μ, Σ)], equivariant estimators of Σ are proposed. These estimators dominate the best multiple of S and the Stein-type truncated estimators.  相似文献   

10.
The problem of estimating the mean θ of a not necessarily normal p-variate (p > 3) distribution with unknown covariance matrix of the form σ2A (A a known diagonal matrix) on the basis of ni > 2 observations on each coordinate Xt (1 < i < p) is considered. It is argued that the class of scale (or variance) mixtures of normal distributions is a reasonable class to study. Assuming the loss function is quadratic, a large class of improved shrinkage estimators is developed in the case of a balanced design. We generalize results of Berger and Strawderman for one observation in the known-variance case. This methodology also permits the development of a new class of minimax shrinkage estimators of the mean of a p-variate normal distribution for an unbalanced design. Numerical calculations show that the improvements in risk can be substantial.  相似文献   

11.
Let X 1 and X 2 be two independent random variables from normal populations Π1, Π2 with different unknown location parameters θ1 and θ2, respectively and common known scale parameter σ. Let X (2) = max (X 1, X 2) and X (1) = min (X 1, X 2). We consider the problem of estimating the location parameter θ M (or θ J ) of the selected population under the reflected normal loss function. We obtain minimax estimators of θ M and θ J . Also, we provide sufficient conditions for the inadmissibility of invariant estimators of θ M and θ J .  相似文献   

12.
The aim of this paper is to study the estimation of the reliability R=P(Y<X) when X and Y are independent random variables that follow Kumaraswamy's distribution with different parameters. If we assume that the first shape parameter is common and known, the maximum-likelihood estimator (MLE), the exact confidence interval and the uniformly minimum variance unbiased estimator of R are obtained. Moreover, when the first parameter is common but unknown, MLEs, Bayes estimators, asymptotic distributions and confidence intervals for R are derived. Furthermore, Bayes and empirical Bayes estimators for R are obtained when the first parameter is common and known. Finally, when all four parameters are different and unknown, the MLE of R is obtained. Monte Carlo simulations are performed to compare the different proposed methods and conclusions on the findings are given.  相似文献   

13.
“Nonparametric” in the title is used to say that observations X 1,…,X n come from an unknown distribution F ∈ ? with ? being the class of all continuous and strictly increasing distribution functions. The problem is to estimate the quantile of a given order q ∈ (0,1) of the distribution F. The class ? of distributions is very large; it is so large that even X nq:n , where nq is an integer, may be very poor estimator of the qth quantile. To assess the performance of estimators no properties based on moments may be used: expected values of estimators should be replaced by their medians, their variances—by some characteristics of concentration of distributions around the median. If an estimator is median-biased for one of distributions, the bias of the estimator may be infinitely large for other distributions. In the note optimal estimators with respect to various criteria of optimality are presented. The pivotal function F(T) of the estimator T is introduced which enables us to apply the classical statistical approach.  相似文献   

14.
Consider a sequence of independent random variables X 1, X 2,…,X n observed at n equally spaced time points where X i has a probability distribution which is known apart from the values of a parameter θ i R which may change from observation to observation. We consider the problem of estimating θ = (θ1, θ2,…,θ n ) given the observed values of X 1, X 2,…,X n . The paper proposes a prior distribution for the parameters θ for which sets of parameter values exhibiting no change, or no change apart from a few sudden large changes, or lots of small changes, all have positive prior probability. Markov chain sampling may be used to calculate Bayes estimates of the parameters. We report the results of a Monte Carlo study based on Poisson distributed data which compares the Bayes estimator with estimators obtained using cubic splines and with estimators derived from the Schwarz criterion. We conclude that the Bayes method is preferable in a minimax sense since it never produces the disastrously large errors of the other methods and pays only a modest price for this degree of safety. All three methods are used to smooth mortality rates for oesophageal cancer in Irish males aged 65–69 over the period 1955 through 1994.  相似文献   

15.
In this paper we consider models involving the convex hull operation of the parameter and the noise i.e. Yi = CH(A, XX). Then we generalize the basic models to ANOVA models; i.e. Yij=CH(A∪Bj,Xij). In some cases the consistent estimators for the J U new parameters are derived. Assuming the existence of density forrandom convex sets, we derive the likelihood for the convex hull model. We then find the maximum Likelihood Estimators for the parameters. Examples for some random convex sets with finite dimensional distributions are derived to show how good these estimators are.  相似文献   

16.
ABSTRACT

The problem of estimation of R = P(Y < X) have been used in the paper. Let X has exponential distribution mixing with exponential distribution with parameters β and θ and Y independently of X has exponential distribution with parameter λ. By using a prior guess or estimate R0, different shrinkage estimators of R are derived. Then the performance of the estimators are discussed. Finally, we compare these results with Baklizei and Dayyeh (2003) approaches.  相似文献   

17.
We consider the problem of maximum likelihood estimation of the parameters of the bxvariate binomial distribution, In the statistical literature, this problem is solved when the observed sample is available in the form of a 2x2 contingency table, that is, with all four cell fre quencies given,, The present paper provides a solution for this problem when only the marginal totals of the 2x2 table are observed, which is the natural set-up in a bivariate sampling situation.. Thus, based on a sample [(Xi,Yi:), i = 1, …, k] from a bivariate binomial population, we derive maximum likelihood (ML) estimators for the two marginal parameters p1,p2: and the covariance parameter p11: It. turns out that the ML estimators for P1: and P2: are expressed explicitly in terms of the sample values, whereas the ML estimator for p11: can only be obtained numerically by iterative methods Two nu merical illustrations are also presented  相似文献   

18.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

19.
Let X be a continuous nonnegative random variable with finite first and second moments and a continuous pdf that is positive on the interior of its support. A nonzero limiting density at the origin and a coefficient of variation (CV) greater than 1 are shown to be sufficient conditions for the distribution truncated below at t > 0 to have a variance greater than the variance of the full distribution. Distributions that satisfy these conditions include those with decreasing hazard rates (e.g., the gamma and Weibull distributions with shape parameters less than 1) and the beta distribution with parameter values p and q for which q > p(p + q + 1). The bound T for which truncation at 0 < t < T increases the variance relative to the full distribution is shown to be greater than the (1 — 1/CV)th percentile of the full distribution.  相似文献   

20.
Let X1, X2,…,Xn be independent, indentically distributed random variables with density f(x,θ) with respect to a σ-finite measure μ. Let R be a measurable set in the sample space X. The value of X is observable if X ? (X?R) and not otherwise. The number J of observable X’s is binomial, N, Q, Q = 1?P(X ? R). On the basis of J observations, it is desired to estimate N and θ. Estimators considered are conditional and unconditional maximum likelihood and modified maximum likelihood using a prior weight function to modify the likelihood before maximizing. Asymptotic expansions are developed for the [Ncirc]’s of the form [Ncirc] = N + α√N + β + op(1), where α and β are random variables. All estimators have the same α, which has mean 0, variance σ2 (a function of θ) and is asymptotically normal. Hence all are asymptotically equivalent by the usual limit distributional theory. The β’s differ and Eβ can be considered an “asymptotic bias”. Formulas are developed to compare the asymptotic biases of the various estimators. For a scale parameter family of absolutely continuous distributions with X = (0,∞) and R = (T,∞), special formuli are developed and a best estimator is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号