首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There exists a recent study where dynamic mixed‐effects regression models for count data have been extended to a semi‐parametric context. However, when one deals with other discrete data such as binary responses, the results based on count data models are not directly applicable. In this paper, we therefore begin with existing binary dynamic mixed models and generalise them to the semi‐parametric context. For inference, we use a new semi‐parametric conditional quasi‐likelihood (SCQL) approach for the estimation of the non‐parametric function involved in the semi‐parametric model, and a semi‐parametric generalised quasi‐likelihood (SGQL) approach for the estimation of the main regression, dynamic dependence and random effects variance parameters. A semi‐parametric maximum likelihood (SML) approach is also used as a comparison to the SGQL approach. The properties of the estimators are examined both asymptotically and empirically. More specifically, the consistency of the estimators is established and finite sample performances of the estimators are examined through an intensive simulation study.  相似文献   

2.
Abstract. Testing for parametric structure is an important issue in non‐parametric regression analysis. A standard approach is to measure the distance between a parametric and a non‐parametric fit with a squared deviation measure. These tests inherit the curse of dimensionality from the non‐parametric estimator. This results in a loss of power in finite samples and against local alternatives. This article proposes to circumvent the curse of dimensionality by projecting the residuals under the null hypothesis onto the space of additive functions. To estimate this projection, the smooth backfitting estimator is used. The asymptotic behaviour of the test statistic is derived and the consistency of a wild bootstrap procedure is established. The finite sample properties are investigated in a simulation study.  相似文献   

3.
Abstract. The receiver operating characteristic (ROC) curve is a tool of extensive use to analyse the discrimination capability of a diagnostic variable in medical studies. In certain situations, the presence of a covariate related to the diagnostic variable can increase the discriminating power of the ROC curve. In this article, we model the effect of the covariate over the diagnostic variable by means of non‐parametric location‐scale regression models. We propose a new non‐parametric estimator of the conditional ROC curve and study its asymptotic properties. We also present some simulations and an illustration to a data set concerning diagnosis of diabetes.  相似文献   

4.
Blest (2000, Aust. N. Z. J. Stat. 42 , 101–111) proposed a new measure of rank correlation that is sensitive to discrepancies in the small ranks. This paper investigates the efficiency properties of non‐parametric tests for independence based on Blest's correlation coefficient and its modifications. Pitman efficiency comparisons are made with analogous tests existing in the literature. Conditions for Pitman optimality of the Blest‐type tests are established.  相似文献   

5.
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates.  相似文献   

6.
Regression with a circular response is a topic of current interest. We introduce non‐parametric smoothing for this problem. Simple adaptations of a weight function enable a unified formulation for both real‐line and circular predictors, whereas these cases have been tackled by quite distinct parametric methods. Additionally, we discuss various methodological extensions, obtaining a number of promising techniques – totally new in circular statistics – such as confidence intervals for the value of a circular regression and non‐parametric autoregression in circular time series. The findings are also illustrated through real data examples.  相似文献   

7.
Abstract. A non‐parametric rank‐based test of exchangeability for bivariate extreme‐value copulas is first proposed. The two key ingredients of the suggested approach are the non‐parametric rank‐based estimators of the Pickands dependence function recently studied by Genest and Segers, and a multiplier technique for obtaining approximate p‐values for the derived statistics. The proposed approach is then extended to left‐tail decreasing dependence structures that are not necessarily extreme‐value copulas. Large‐scale Monte Carlo experiments are used to investigate the level and power of the various versions of the test and show that the proposed procedure can be substantially more powerful than tests of exchangeability derived directly from the empirical copula. The approach is illustrated on well‐known financial data.  相似文献   

8.
The analysis of time series data with detection limits is challenging due to the high‐dimensional integral involved in the likelihood. Existing methods are either computationally demanding or rely on restrictive parametric distributional assumptions. We propose a semiparametric approach, where the temporal dependence is captured by parametric copula, while the marginal distribution is estimated non‐parametrically. Utilizing the properties of copulas, we develop a new copula‐based sequential sampling algorithm, which provides a convenient way to calculate the censored likelihood. Even without full parametric distributional assumptions, the proposed method still allows us to efficiently compute the conditional quantiles of the censored response at a future time point, and thus construct both point and interval predictions. We establish the asymptotic properties of the proposed pseudo maximum likelihood estimator, and demonstrate through simulation and the analysis of a water quality data that the proposed method is more flexible and leads to more accurate predictions than Gaussian‐based methods for non‐normal data. The Canadian Journal of Statistics 47: 438–454; 2019 © 2019 Statistical Society of Canada  相似文献   

9.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

10.
Abstract. We consider the problem of testing parametric assumptions in an inverse regression model with a convolution‐type operator. An L 2 ‐type goodness‐of‐fit test is proposed which compares the distance between a parametric and a non‐parametric estimate of the regression function. Asymptotic normality of the corresponding test statistic is shown under the null hypothesis and under a general non‐parametric alternative with different rates of convergence in both cases. The feasibility of the proposed test is demonstrated by means of a small simulation study. In particular, the power of the test against certain types of alternative is investigated. Finally, an empirical example is provided, in which the proposed methods are applied to the determination of the shape of the luminosity profile of the elliptical galaxy NGC 5017.  相似文献   

11.
Abstract. Systematic sampling is frequently used in surveys, because of its ease of implementation and its design efficiency. An important drawback of systematic sampling, however, is that no direct estimator of the design variance is available. We describe a new estimator of the model‐based expectation of the design variance, under a non‐parametric model for the population. The non‐parametric model is sufficiently flexible that it can be expected to hold at least approximately in many situations with continuous auxiliary variables observed at the population level. We prove the model consistency of the estimator for both the anticipated variance and the design variance under a non‐parametric model with a univariate covariate. The broad applicability of the approach is demonstrated on a dataset from a forestry survey.  相似文献   

12.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method.  相似文献   

13.
Parametrically guided non‐parametric regression is an appealing method that can reduce the bias of a non‐parametric regression function estimator without increasing the variance. In this paper, we adapt this method to the censored data case using an unbiased transformation of the data and a local linear fit. The asymptotic properties of the proposed estimator are established, and its performance is evaluated via finite sample simulations.  相似文献   

14.
Abstract. The partially linear in‐slide model (PLIM) is a useful tool to make econometric analyses and to normalize microarray data. In this article, by using series approximations and a least squares procedure, we propose a semiparametric least squares estimator (SLSE) for the parametric component and a series estimator for the non‐parametric component. Under weaker conditions than those imposed in the literature, we show that the SLSE is asymptotically normal and that the series estimator attains the optimal convergence rate of non‐parametric regression. We also investigate the estimating problem of the error variance. In addition, we propose a wild block bootstrap‐based test for the form of the non‐parametric component. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. An example of application on a set of economical data is also illustrated.  相似文献   

15.
Abstract. In this article, we develop a test for the null hypothesis that a real‐valued function belongs to a given parametric set against the non‐parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right‐censoring model with monotone hazard rate. The criterion for testing is an ‐distance between a Grenander‐type non‐parametric estimator and a parametric estimator computed under the null hypothesis. A normalized version of this distance is shown to have an asymptotic normal distribution under the null, whence a test can be developed. Moreover, a bootstrap procedure is shown to be consistent to calibrate the test.  相似文献   

16.
Abstract. This paper proposes, implements and investigates a new non‐parametric two‐sample test for detecting stochastic dominance. We pose the question of detecting the stochastic dominance in a non‐standard way. This is motivated by existing evidence showing that standard formulations and pertaining procedures may lead to serious errors in inference. The procedure that we introduce matches testing and model selection. More precisely, we reparametrize the testing problem in terms of Fourier coefficients of well‐known comparison densities. Next, the estimated Fourier coefficients are used to form a kind of signed smooth rank statistic. In such a setting, the number of Fourier coefficients incorporated into the statistic is a smoothing parameter. We determine this parameter via some flexible selection rule. We establish the asymptotic properties of the new test under null and alternative hypotheses. The finite sample performance of the new solution is demonstrated through Monte Carlo studies and an application to a set of survival times.  相似文献   

17.
Abstract. Zero‐inflated data abound in ecological studies as well as in other scientific fields. Non‐parametric regression with zero‐inflated response may be studied via the zero‐inflated generalized additive model (ZIGAM) with a probabilistic mixture distribution of zero and a regular exponential family component. We propose the (partially) constrained ZIGAM, which assumes that some covariates affect the probability of non‐zero‐inflation and the regular exponential family distribution mean proportionally on the link scales. When the assumption obtains, the new approach provides a unified framework for modelling zero‐inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We develop an iterative estimation algorithm, and discuss the confidence interval construction of the estimator. Some asymptotic properties are derived. We also propose a Bayesian model selection criterion for choosing between the unconstrained and constrained ZIGAMs. The new methods are illustrated with both simulated data and a real application in jellyfish abundance data analysis.  相似文献   

18.
Abstract. Although generalized cross‐validation (GCV) has been frequently applied to select bandwidth when kernel methods are used to estimate non‐parametric mixed‐effect models in which non‐parametric mean functions are used to model covariate effects, and additive random effects are applied to account for overdispersion and correlation, the optimality of the GCV has not yet been explored. In this article, we construct a kernel estimator of the non‐parametric mean function. An equivalence between the kernel estimator and a weighted least square type estimator is provided, and the optimality of the GCV‐based bandwidth is investigated. The theoretical derivations also show that kernel‐based and spline‐based GCV give very similar asymptotic results. This provides us with a solid base to use kernel estimation for mixed‐effect models. Simulation studies are undertaken to investigate the empirical performance of the GCV. A real data example is analysed for illustration.  相似文献   

19.
Abstract. We investigate non‐parametric estimation of a monotone baseline hazard and a decreasing baseline density within the Cox model. Two estimators of a non‐decreasing baseline hazard function are proposed. We derive the non‐parametric maximum likelihood estimator and consider a Grenander type estimator, defined as the left‐hand slope of the greatest convex minorant of the Breslow estimator. We demonstrate that the two estimators are strongly consistent and asymptotically equivalent and derive their common limit distribution at a fixed point. Both estimators of a non‐increasing baseline hazard and their asymptotic properties are obtained in a similar manner. Furthermore, we introduce a Grenander type estimator for a non‐increasing baseline density, defined as the left‐hand slope of the least concave majorant of an estimator of the baseline cumulative distribution function, derived from the Breslow estimator. We show that this estimator is strongly consistent and derive its asymptotic distribution at a fixed point.  相似文献   

20.
Motivated by the need to analyze the National Longitudinal Surveys data, we propose a new semiparametric longitudinal mean‐covariance model in which the effects on dependent variable of some explanatory variables are linear and others are non‐linear, while the within‐subject correlations are modelled by a non‐stationary autoregressive error structure. We develop an estimation machinery based on least squares technique by approximating non‐parametric functions via B‐spline expansions and establish the asymptotic normality of parametric estimators as well as the rate of convergence for the non‐parametric estimators. We further advocate a new model selection strategy in the varying‐coefficient model framework, for distinguishing whether a component is significant and subsequently whether it is linear or non‐linear. Besides, the proposed method can also be employed for identifying the true order of lagged terms consistently. Monte Carlo studies are conducted to examine the finite sample performance of our approach, and an application of real data is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号