首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X1,…,Xr?1,Xr,Xr+1,…,Xn be independent, continuous random variables such that Xi, i = 1,…,r, has distribution function F(x), and Xi, i = r+1,…,n, has distribution function F(x?Δ), with -∞ <Δ< ∞. When the integer r is unknown, this is refered to as a change point problem with at most one change. The unknown parameter Δ represents the magnitude of the change and r is called the changepoint. In this paper we present a general review discussion of several nonparametric approaches for making inferences about r and Δ.  相似文献   

2.
In analyzing the lifetime properties of a coherent system, the concept of “signature” is a useful tool. Let T be the lifetime of a coherent system having n iid components. The signature of the system is a probability vector s=(s1, s2, …, sn), such that si=P(T=Xi:n), where, Xi:n, i=1, 2, …, n denote the ordered lifetimes of the components. In this note, we assume that the system is working at time t>0. We consider the conditional signature of the system as a vector in which the ith element is defined as pi(t)=P(T=Xi:n|T>t) and investigate its properties as a function of time.  相似文献   

3.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

4.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

5.
6.
Suppose particles are randomly distributed in a certain medium, powder or liquid, which is conceptually divided into N cells. Let pi denote the probability that a particle falls in the ith cell and Yi denote the number of particles in the ith cell. Assume that the joint probability function of the Yi follows a multinomial distribution with cell probabilities pi respectively. Take n (≤N) cells at random without replacement and put each of the cells separately through a mixing mechanism of dilution and swirl. These n cells constitute the first stage samples and the number of particles in these cells are not observable. Now conceptually divide each of n cells into M subcells of equal size and let Xij denote the number of particles in the jth subcell of the ith cell selected in the first stage; i=1,2,…,N and j=1,2,…,M. Consequently assume that the conditional joint probability function of the Xij given Yi=yi follows a multinomial distribution with equal cell probabilities. Now take m (≤M) subcells at random from each of the cells selected in the first stage sample. Assume that the numbers of particles in M×N subcells are observable. The properties of the estimator of the particle density per sample unit are investigated under the modified two-stage cluster sampling method. A laboratory experiment for Xanthan Gum Products is analyzed in order to examine the appropriateness of the model assumed in this paper.  相似文献   

7.
Complete sets of orthogonal F-squares of order n = sp, where g is a prime or prime power and p is a positive integer have been constructed by Hedayat, Raghavarao, and Seiden (1975). Federer (1977) has constructed complete sets of orthogonal F-squares of order n = 4t, where t is a positive integer. We give a general procedure for constructing orthogonal F-squares of order n from an orthogonal array (n, k, s, 2) and an OL(s, t) set, where n is not necessarily a prime or prime power. In particular, we show how to construct sets of orthogonal F-squares of order n = 2sp, where s is a prime or prime power and p is a positive integer. These sets are shown to be near complete and approach complete sets as s and/or p become large. We have also shown how to construct orthogonal arrays by these methods. In addition, the best upper bound on the number t of orthogonal F(n, λ1), F(n, λ2), …, F(n, λ1) squares is given.  相似文献   

8.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

9.
Simulating a stationary AR(p), Xt = ∑pi=1αiXti + Zt, when the innovations {Zt} are assumed to be i.i.d. is straightforward. Starting the process in the stationary state, however, requires generation of (X1,X2,…,Xp) from the stationary p-dimensional distribution. When Zt is normal this may be achieved by generating Xi as a linear function of X1,X2,…,Xi−1 and an independent normal variate for i = 2,3,…, p. It is shown that the ability to initialize a stationary AR(p) in this way characterizes the normal distribution.  相似文献   

10.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

11.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

12.
A stochastic approximation procedure of the Robbins-Monro type is considered. The original idea behind the Newton-Raphson method is used as follows. Given n approximations X1,…, Xn with observations Y1,…, Yn, a least squares line is fitted to the points (Xm, Ym),…, (Xn, Yn) where m<n may depend on n. The (n+1)st approximation is taken to be the intersection of the least squares line with y=0. A variation of the resulting process is studied. It is shown that this process yields a strongly consistent sequence of estimates which is asymptotically normal with minimal asymptotic variance.  相似文献   

13.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

14.
Let T2 i=z′iS?1zi, i==,…k be correlated Hotelling's T2 statistics under normality. where z=(z′i,…,z′k)′ and nS are independently distributed as Nkp((O,ρ?∑) and Wishart distribution Wp(∑, n), respectively. The purpose of this paper is to study the distribution function F(x1,…,xk) of (T2 i,…,T2 k) when n is large. First we derive an asymptotic expansion of the characteristic function of (T2 i,…,T2 k) up to the order n?2. Next we give asymptotic expansions for (T2 i,…,T2 k) in two cases (i)ρ=Ik and (ii) k=2 by inverting the expanded characteristic function up to the orders n?2 and n?1, respectively. Our results can be applied to the distribution function of max (T2 i,…,T2 k) as a special case.  相似文献   

15.
We consider a life testing experiment in whichn units are put on test, successive lifetimes (X 1,X 2) of both componentsC 1 andC 2 are recorded and the observation is terminated either at ther-th order statistic ofY i =Min(X 1i ,X 2i ),i=1,…,n i.e.Y (r) or a random timeT i whichever is reached first. This mixture of random censoring and type-II censoring schemes, we call as hybrid random censoring which is of wide use. We use this censoring scheme and obtain maximum likelihood estimation of the parameters and develop large sample tests in bivariate exponential (BVE) models proposed by Marshall-Olkin (1967), Block-Basu (1974), Freund (1961) and Preschan-Sullo (1974).  相似文献   

16.
Let X1, X2, …, Xm be successive observations on m objects, numbered 1,2, …, m. If X1 belongs to the n largest observations among X1,X2,…,Xi, object i is called a record, i = 1,2,…,m; n?1.In investigating the influence of the ranking of the objects on the expected number of records, a hierarchy of stochastic order relations between random variables arises.It is these order relations and their relationship with known stochastic orderings that are studied in this paper.  相似文献   

17.
We consider a centered stochastic process {X(t):tT} with known and continuous covariance function. On the basis of observations X(t1), …, X(tn) we approximate the whole path by orthogonal projection and measure the performance of the chosen design d = (t1, …, tn)′ by the corresponding mean squared L2-distance. For covariance functions on T2 = [0, 1]2, which satisfy a generalized Sacks-Ylvisaker regularity condition of order zero, we construct asymptotically optimal sequences of designs. Moreover, we characterize the achievement of a lower error bound, given by Micchelli and Wahba (1981), and study the question of whether this bound can be attained.  相似文献   

18.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

19.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

20.
In this paper, by considering a 2n-dimensional elliptically contoured random vector (XT,YT)T=(X1,…,Xn,Y1,…,Yn)T, we derive the exact joint distribution of linear combinations of concomitants of order statistics arising from X. Specifically, we establish a mixture representation for the distribution of the rth concomitant order statistic, and also for the joint distribution of the rth order statistic and its concomitant. We show that these distributions are indeed mixtures of multivariate unified skew-elliptical distributions. The two most important special cases of multivariate normal and multivariate t distributions are then discussed in detail. Finally, an application of the established results in an inferential problem is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号