首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On boundary correction in kernel density estimation   总被引:1,自引:0,他引:1  
It is well known now that kernel density estimators are not consistent when estimating a density near the finite end points of the support of the density to be estimated. This is due to boundary effects that occur in nonparametric curve estimation problems. A number of proposals have been made in the kernel density estimation context with some success. As of yet there appears to be no single dominating solution that corrects the boundary problem for all shapes of densities. In this paper, we propose a new general method of boundary correction for univariate kernel density estimation. The proposed method generates a class of boundary corrected estimators. They all possess desirable properties such as local adaptivity and non-negativity. In simulation, it is observed that the proposed method perform quite well when compared with other existing methods available in the literature for most shapes of densities, showing a very important robustness property of the method. The theory behind the new approach and the bias and variance of the proposed estimators are given. Results of a data analysis are also given.  相似文献   

2.
The kernel method of estimation of curves is now popular and widely used in statistical applications. Kernel estimators suffer from boundary effects, however, when the support of the function to be estimated has finite endpoints. Several solutions to this problem have already been proposed. Here the authors develop a new method of boundary correction for kernel density estimation. Their technique is a kind of generalized reflection involving transformed data. It generates a class of boundary corrected estimators having desirable properties such as local smoothness and nonnegativity. Simulations show that the proposed method performs quite well when compared with the existing methods for almost all shapes of densities. The authors present the theory behind this new methodology, and they determine the bias and variance of their estimators.  相似文献   

3.
Statistical learning is emerging as a promising field where a number of algorithms from machine learning are interpreted as statistical methods and vice-versa. Due to good practical performance, boosting is one of the most studied machine learning techniques. We propose algorithms for multivariate density estimation and classification. They are generated by using the traditional kernel techniques as weak learners in boosting algorithms. Our algorithms take the form of multistep estimators, whose first step is a standard kernel method. Some strategies for bandwidth selection are also discussed with regard both to the standard kernel density classification problem, and to our 'boosted' kernel methods. Extensive experiments, using real and simulated data, show an encouraging practical relevance of the findings. Standard kernel methods are often outperformed by the first boosting iterations and in correspondence of several bandwidth values. In addition, the practical effectiveness of our classification algorithm is confirmed by a comparative study on two real datasets, the competitors being trees including AdaBoosting with trees.  相似文献   

4.
In this paper, we consider the estimation problem of f(0), the value of density f at the left endpoint 0. Nonparametric estimation of f(0) is rather formidable due to boundary effects that occur in nonparametric curve estimation. It is well known that the usual kernel density estimates require modifications when estimating the density near endpoints of the support. Here we investigate the local polynomial smoothing technique as a possible alternative method for the problem. It is observed that our density estimator also possesses desirable properties such as automatic adaptability for boundary effects near endpoints. We also obtain an ‘optimal kernel’ in order to estimate the density at endpoints as a solution of a variational problem. Two bandwidth variation schemes are discussed and investigated in a Monte Carlo study.  相似文献   

5.
A bandwidth selection method that combines the concept of least-squares cross-validation and the plug-in approach is being introduced in connection with kernel density estimation. A simulation study reveals that this hybrid methodology outperforms some commonly used bandwidth selection rules. It is shown that the proposed approach can also be readily employed in the context of variable kernel density estimation. We conclude with two illustrative examples.  相似文献   

6.
As conventional cross-validation bandwidth selection methods do not work properly in the situation where the data are serially dependent time series, alternative bandwidth selection methods are necessary. In recent years, Bayesian-based methods for global bandwidth selection have been studied. Our experience shows that a global bandwidth is however less suitable than a localized bandwidth in kernel density estimation based on serially dependent time series data. Nonetheless, a di?cult issue is how we can consistently estimate a localized bandwidth. This paper presents a nonparametric localized bandwidth estimator, for which we establish a completely new asymptotic theory. Applications of this new bandwidth estimator to the kernel density estimation of Eurodollar deposit rate and the S&P 500 daily return demonstrate the effectiveness and competitiveness of the proposed localized bandwidth.  相似文献   

7.
A local orthogonal polynomial expansion (LOrPE) of the empirical density function is proposed as a novel method to estimate the underlying density. The estimate is constructed by matching localised expectation values of orthogonal polynomials to the values observed in the sample. LOrPE is related to several existing methods, and generalises straightforwardly to multivariate settings. By manner of construction, it is similar to local likelihood density estimation (LLDE). In the limit of small bandwidths, LOrPE functions as kernel density estimation (KDE) with high-order (effective) kernels inherently free of boundary bias, a natural consequence of kernel reshaping to accommodate endpoints. Consistency and faster asymptotic convergence rates follow. In the limit of large bandwidths LOrPE is equivalent to orthogonal series density estimation (OSDE) with Legendre polynomials, thereby inheriting its consistency. We compare the performance of LOrPE to KDE, LLDE, and OSDE, in a number of simulation studies. In terms of mean integrated squared error, the results suggest that with a proper balance of the two tuning parameters, bandwidth and degree, LOrPE generally outperforms these competitors when estimating densities with sharply truncated supports.  相似文献   

8.
Nonparametric density estimation in the presence of measurement error is considered. The usual kernel deconvolution estimator seeks to account for the contamination in the data by employing a modified kernel. In this paper a new approach based on a weighted kernel density estimator is proposed. Theoretical motivation is provided by the existence of a weight vector that perfectly counteracts the bias in density estimation without generating an excessive increase in variance. In practice a data driven method of weight selection is required. Our strategy is to minimize the discrepancy between a standard kernel estimate from the contaminated data on the one hand, and the convolution of the weighted deconvolution estimate with the measurement error density on the other hand. We consider a direct implementation of this approach, in which the weights are optimized subject to sum and non-negativity constraints, and a regularized version in which the objective function includes a ridge-type penalty. Numerical tests suggest that the weighted kernel estimation can lead to tangible improvements in performance over the usual kernel deconvolution estimator. Furthermore, weighted kernel estimates are free from the problem of negative estimation in the tails that can occur when using modified kernels. The weighted kernel approach generalizes to the case of multivariate deconvolution density estimation in a very straightforward manner.  相似文献   

9.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.  相似文献   

10.
Since the late 1980s, several methods have been considered in the literature to reduce the sample variability of the least-squares cross-validation bandwidth selector for kernel density estimation. In this article, a weighted version of this classical method is proposed and its asymptotic and finite-sample behavior is studied. The simulation results attest that the weighted cross-validation bandwidth performs quite well, presenting a better finite-sample performance than the standard cross-validation method for “easy-to-estimate” densities, and retaining the good finite-sample performance of the standard cross-validation method for “hard-to-estimate” ones.  相似文献   

11.
Kernel-based density estimation algorithms are inefficient in presence of discontinuities at support endpoints. This is substantially due to the fact that classic kernel density estimators lead to positive estimates beyond the endopoints. If a nonparametric estimate of a density functional is required in determining the bandwidth, then the problem also affects the bandwidth selection procedure. In this paper algorithms for bandwidth selection and kernel density estimation are proposed for non-negative random variables. Furthermore, the methods we propose are compared with some of the principal solutions in the literature through a simulation study.  相似文献   

12.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

13.
Simple boundary correction for kernel density estimation   总被引:8,自引:0,他引:8  
If a probability density function has bounded support, kernel density estimates often overspill the boundaries and are consequently especially biased at and near these edges. In this paper, we consider the alleviation of this boundary problem. A simple unified framework is provided which covers a number of straightforward methods and allows for their comparison: generalized jackknifing generates a variety of simple boundary kernel formulae. A well-known method of Rice (1984) is a special case. A popular linear correction method is another: it has close connections with the boundary properties of local linear fitting (Fan and Gijbels, 1992). Links with the optimal boundary kernels of Müller (1991) are investigated. Novel boundary kernels involving kernel derivatives and generalized reflection arise too. In comparisons, various generalized jackknifing methods perform rather similarly, so this, together with its existing popularity, make linear correction as good a method as any. In an as yet unsuccessful attempt to improve on generalized jackknifing, a variety of alternative approaches is considered. A further contribution is to consider generalized jackknife boundary correction for density derivative estimation. En route to all this, a natural analogue of local polynomial regression for density estimation is defined and discussed.  相似文献   

14.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

15.
In this paper, we propose two kernel density estimators based on a bias reduction technique. We study the properties of these estimators and compare them with Parzen–Rosenblatt's density estimator and Mokkadem, A., Pelletier, M., and Slaoui, Y. (2009, ‘The stochastic approximation method for the estimation of a multivariate probability density’, J. Statist. Plann. Inference, 139, 2459–2478) is density estimators. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators and the asymptotic MISE (Mean Integrated Squared Error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations.  相似文献   

16.
The problem of density estimation arises naturally in many contexts. In this paper, we consider the approach using a piecewise constant function to approximate the underlying density. We present a new density estimation method via the random forest method based on the Bayesian Sequential Partition (BSP) (Lu, Jiang, and Wong 2013 Lu, L., H. Jiang, and W. H. Wong, 2013. Multivariate density estimation by Bayesian Sequential Partitioning. Journal of the American Statistical Association 108(504):140210.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). Extensive simulations are carried out with comparison to the kernel density estimation method, BSP method, and four local kernel density estimation methods. The experiment results show that the new method is capable of providing accurate and reliable density estimation, even at the boundary, especially for i.i.d. data. In addition, the likelihood of the out-of-bag density estimation, which is a byproduct of the training process, is an effective hyperparameter selection criterion.  相似文献   

17.
Kernel smoothing methods are widely used in many research areas in statistics. However, kernel estimators suffer from boundary effects when the support of the function to be estimated has finite endpoints. Boundary effects seriously affect the overall performance of the estimator. In this article, we propose a new method of boundary correction for univariate kernel density estimation. Our technique is based on a data transformation that depends on the point of estimation. The proposed method possesses desirable properties such as local adaptivity and non-negativity. Furthermore, unlike many other transformation methods available, the proposed estimator is easy to implement. In a Monte Carlo study, the accuracy of the proposed estimator is numerically analyzed and compared with the existing methods of boundary correction. We find that it performs well for most shapes of densities. The theory behind the new methodology, along with the bias and variance of the proposed estimator, are presented. Results of a data analysis are also given.  相似文献   

18.
We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.  相似文献   

19.
Kernel density classification and boosting: an L2 analysis   总被引:1,自引:0,他引:1  
Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification.A relative newcomer to the classification portfolio is boosting, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research.  相似文献   

20.
A new procedure is proposed for deriving variable bandwidths in univariate kernel density estimation, based upon likelihood cross-validation and an analysis of a Bayesian graphical model. The procedure admits bandwidth selection which is flexible in terms of the amount of smoothing required. In addition, the basic model can be extended to incorporate local smoothing of the density estimate. The method is shown to perform well in both theoretical and practical situations, and we compare our method with those of Abramson (The Annals of Statistics 10: 1217–1223) and Sain and Scott (Journal of the American Statistical Association 91: 1525–1534). In particular, we note that in certain cases, the Sain and Scott method performs poorly even with relatively large sample sizes.We compare various bandwidth selection methods using standard mean integrated square error criteria to assess the quality of the density estimates. We study situations where the underlying density is assumed both known and unknown, and note that in practice, our method performs well when sample sizes are small. In addition, we also apply the methods to real data, and again we believe our methods perform at least as well as existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号