首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conditional power calculations are frequently used to guide the decision whether or not to stop a trial for futility or to modify planned sample size. These ignore the information in short‐term endpoints and baseline covariates, and thereby do not make fully efficient use of the information in the data. We therefore propose an interim decision procedure based on the conditional power approach which exploits the information contained in baseline covariates and short‐term endpoints. We will realize this by considering the estimation of the treatment effect at the interim analysis as a missing data problem. This problem is addressed by employing specific prediction models for the long‐term endpoint which enable the incorporation of baseline covariates and multiple short‐term endpoints. We show that the proposed procedure leads to an efficiency gain and a reduced sample size, without compromising the Type I error rate of the procedure, even when the adopted prediction models are misspecified. In particular, implementing our proposal in the conditional power approach enables earlier decisions relative to standard approaches, whilst controlling the probability of an incorrect decision. This time gain results in a lower expected number of recruited patients in case of stopping for futility, such that fewer patients receive the futile regimen. We explain how these methods can be used in adaptive designs with unblinded sample size re‐assessment based on the inverse normal P‐value combination method to control Type I error. We support the proposal by Monte Carlo simulations based on data from a real clinical trial.  相似文献   

2.
In group sequential clinical trials, there are several sample size re-estimation methods proposed in the literature that allow for change of sample size at the interim analysis. Most of these methods are based on either the conditional error function or the interim effect size. Our simulation studies compared the operating characteristics of three commonly used sample size re-estimation methods, Chen et al. (2004), Cui et al. (1999), and Muller and Schafer (2001). Gao et al. (2008) extended the CDL method and provided an analytical expression of lower and upper threshold of conditional power where the type I error is preserved. Recently, Mehta and Pocock (2010) extensively discussed that the real benefit of the adaptive approach is to invest the sample size resources in stages and increasing the sample size only if the interim results are in the so called “promising zone” which they define in their article. We incorporated this concept in our simulations while comparing the three methods. To test the robustness of these methods, we explored the impact of incorrect variance assumption on the operating characteristics. We found that the operating characteristics of the three methods are very comparable. In addition, the concept of promising zone, as suggested by MP, gives the desired power and smaller average sample size, and thus increases the efficiency of the trial design.  相似文献   

3.
In an environment where (i) potential risks to subjects participating in clinical studies need to be managed carefully, (ii) trial costs are increasing, and (iii) there are limited research resources available, it is necessary to prioritize research projects and sometimes re-prioritize if early indications suggest that a trial has low probability of success. Futility designs allow this re-prioritization to take place. This paper reviews a number of possible futility methods available and presents a case study from a late-phase study of an HIV therapeutic, which utilized conditional power-based stopping thresholds. The two most challenging aspects of incorporating a futility interim analysis into a trial design are the selection of optimal stopping thresholds and the timing of the analysis, both of which require the balancing of various risks. The paper outlines a number of graphical aids that proved useful in explaining the statistical risks involved to the study team. Further, the paper outlines a decision analysis undertaken which combined expectations of drug performance with conditional power calculations in order to produce probabilities of different interim and final outcomes, and which ultimately led to the selection of the final stopping thresholds.  相似文献   

4.
For the case of a one‐sample experiment with known variance σ2=1, it has been shown that at interim analysis the sample size (SS) may be increased by any arbitrary amount provided: (1) The conditional power (CP) at interim is ?50% and (2) there can be no decision to decrease the SS (stop the trial early). In this paper we verify this result for the case of a two‐sample experiment with proportional SS in the treatment groups and an arbitrary common variance. Numerous authors have presented the formula for the CP at interim for a two‐sample test with equal SS in the treatment groups and an arbitrary common variance, for both the one‐ and two‐sided hypothesis tests. In this paper we derive the corresponding formula for the case of unequal, but proportional SS in the treatment groups for both one‐sided superiority and two‐sided hypothesis tests. Finally, we present an SAS macro for doing this calculation and provide a worked out hypothetical example. In discussion we note that this type of trial design trades the ability to stop early (for lack of efficacy) for the elimination of the Type I error penalty. The loss of early stopping requires that such a design employs a data monitoring committee, blinding of the sponsor to the interim calculations, and pre‐planning of how much and under what conditions to increase the SS and that this all be formally written into an interim analysis plan before the start of the study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The term 'futility' is used to refer to the inability of a clinical trial to achieve its objectives. In particular, stopping a clinical trial when the interim results suggest that it is unlikely to achieve statistical significance can save resources that could be used on more promising research. There are various approaches that have been proposed to assess futility, including stochastic curtailment, predictive power, predictive probability, and group sequential methods. In this paper, we describe and contrast these approaches, and discuss several issues associated with futility analyses, such as ethical considerations, whether or not type I error can or should be reclaimed, one-sided vs two-sided futility rules, and the impact of futility analyses on power.  相似文献   

6.
In this paper, we derive sequential conditional probability ratio tests to compare diagnostic tests without distributional assumptions on test results. The test statistics in our method are nonparametric weighted areas under the receiver-operating characteristic curves. By using the new method, the decision of stopping the diagnostic trial early is unlikely to be reversed should the trials continue to the planned end. The conservatism reflected in this approach to have more conservative stopping boundaries during the course of the trial is especially appealing for diagnostic trials since the end point is not death. In addition, the maximum sample size of our method is not greater than a fixed sample test with similar power functions. Simulation studies are performed to evaluate the properties of the proposed sequential procedure. We illustrate the method using data from a thoracic aorta imaging study.  相似文献   

7.
An internal pilot with interim analysis (IPIA) design combines interim power analysis (an internal pilot) with interim data analysis (two stage group sequential). We provide IPIA methods for single df hypotheses within the Gaussian general linear model, including one and two group t tests. The design allows early stopping for efficacy and futility while also re-estimating sample size based on an interim variance estimate. Study planning in small samples requires the exact and computable forms reported here. The formulation gives fast and accurate calculations of power, type I error rate, and expected sample size.  相似文献   

8.
Summary. Interim analysis is important in a large clinical trial for ethical and cost considerations. Sometimes, an interim analysis needs to be performed at an earlier than planned time point. In that case, methods using stochastic curtailment are useful in examining the data for early stopping while controlling the inflation of type I and type II errors. We consider a three-arm randomized study of treatments to reduce perioperative blood loss following major surgery. Owing to slow accrual, an unplanned interim analysis was required by the study team to determine whether the study should be continued. We distinguish two different cases: when all treatments are under direct comparison and when one of the treatments is a control. We used simulations to study the operating characteristics of five different stochastic curtailment methods. We also considered the influence of timing of the interim analyses on the type I error and power of the test. We found that the type I error and power between the different methods can be quite different. The analysis for the perioperative blood loss trial was carried out at approximately a quarter of the planned sample size. We found that there is little evidence that the active treatments are better than a placebo and recommended closure of the trial.  相似文献   

9.
An internal pilot with interim analysis (IPIA) design combines interim power analysis (an internal pilot) with interim data analysis (two-stage group sequential). We provide IPIA methods for single df hypotheses within the Gaussian general linear model, including one and two group t tests. The design allows early stopping for efficacy and futility while also re-estimating sample size based on an interim variance estimate. Study planning in small samples requires the exact and computable forms reported here. The formulation gives fast and accurate calculations of power, Type I error rate, and expected sample size.  相似文献   

10.
Stochastic curtailing method is used in monitoring slowly accruing clinical data from a fixed sample size design for any possible early stopping of the trial. This paper refines the results of Lan and Wittes (1988) by providing reasonable estimator of the conditional power at any given information time for better decision making. Some comparisons, examples are provided, and consequences are-discussed.  相似文献   

11.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

12.
Sample size calculations in clinical trials need to be based on profound parameter assumptions. Wrong parameter choices may lead to too small or too high sample sizes and can have severe ethical and economical consequences. Adaptive group sequential study designs are one solution to deal with planning uncertainties. Here, the sample size can be updated during an ongoing trial based on the observed interim effect. However, the observed interim effect is a random variable and thus does not necessarily correspond to the true effect. One way of dealing with the uncertainty related to this random variable is to include resampling elements in the recalculation strategy. In this paper, we focus on clinical trials with a normally distributed endpoint. We consider resampling of the observed interim test statistic and apply this principle to several established sample size recalculation approaches. The resulting recalculation rules are smoother than the original ones and thus the variability in sample size is lower. In particular, we found that some resampling approaches mimic a group sequential design. In general, incorporating resampling of the interim test statistic in existing sample size recalculation rules results in a substantial performance improvement with respect to a recently published conditional performance score.  相似文献   

13.
Planning and conducting interim analysis are important steps for long-term clinical trials. In this article, the concept of conditional power is combined with the classic analysis of variance (ANOVA) for a study of two-stage sample size re-estimation based on interim analysis. The overall Type I and Type II errors would be inflated by interim analysis. We compared the effects on re-estimating sample sizes with and without the adjustment of Type I and Type II error rates due to interim analysis.  相似文献   

14.
Several researchers have proposed solutions to control type I error rate in sequential designs. The use of Bayesian sequential design becomes more common; however, these designs are subject to inflation of the type I error rate. We propose a Bayesian sequential design for binary outcome using an alpha‐spending function to control the overall type I error rate. Algorithms are presented for calculating critical values and power for the proposed designs. We also propose a new stopping rule for futility. Sensitivity analysis is implemented for assessing the effects of varying the parameters of the prior distribution and maximum total sample size on critical values. Alpha‐spending functions are compared using power and actual sample size through simulations. Further simulations show that, when total sample size is fixed, the proposed design has greater power than the traditional Bayesian sequential design, which sets equal stopping bounds at all interim analyses. We also find that the proposed design with the new stopping for futility rule results in greater power and can stop earlier with a smaller actual sample size, compared with the traditional stopping rule for futility when all other conditions are held constant. Finally, we apply the proposed method to a real data set and compare the results with traditional designs.  相似文献   

15.
In monitoring clinical trials, the question of futility, or whether the data thus far suggest that the results at the final analysis are unlikely to be statistically successful, is regularly of interest over the course of a study. However, the opposite viewpoint of whether the study is sufficiently demonstrating proof of concept (POC) and should continue is a valuable consideration and ultimately should be addressed with high POC power so that a promising study is not prematurely terminated. Conditional power is often used to assess futility, and this article interconnects the ideas of assessing POC for the purpose of study continuation with conditional power, while highlighting the importance of the POC type I error and the POC type II error for study continuation or not at the interim analysis. Methods for analyzing subgroups motivate the interim analyses to maintain high POC power via an adjusted interim POC significance level criterion for study continuation or testing against an inferiority margin. Furthermore, two versions of conditional power based on the assumed effect size or the observed interim effect size are considered. Graphical displays illustrate the relationship of the POC type II error for premature study termination to the POC type I error for study continuation and the associated conditional power criteria.  相似文献   

16.
A strategy for stopping long-term randomized clinical trials with time-to-event as a primary outcome measure has been considered using the criteria requiring multiple consecutive (or non consecutive) rejections at a specified α-level that controls against elevation of type I error. The procedure using two consecutive rejections is presented in this work along with the corresponding α-levels for the interim tests. The boundary cutoff values for these interim levels were determined based on an overall prespecified test size and were calculated using multidimensional integration and/or simulations. The reduction in the interim α-level values that is required to maintain the experiment-wise error rate is found to be modest. The power of the test is evaluated under various alternative accrual and hazard patterns. This procedure provides a more realistic stopping rule in large multi-center trials where it may be undesirable to terminate a trial unless a sustained effect has been demonstrated.  相似文献   

17.
It is challenging to estimate the statistical power when a complicated testing strategy is used to adjust for the type-I error for multiple comparisons in a clinical trial. In this paper, we use the Bonferroni Inequality to estimate the lower bound of the statistical power assuming that test statistics are approximately normally distributed and the correlation structure among test statistics is unknown or only partially known. The method was applied to the design of a clinical study for sample size and statistical power estimation.  相似文献   

18.
19.
Since the treatment effect of an experimental drug is generally not known at the onset of a clinical trial, it may be wise to allow for an adjustment in the sample size after an interim analysis of the unblinded data. Using a particular adaptive test statistic, a procedure is demonstrated for finding the optimal design. Both the timing of the interim analysis and the way the sample size is adjusted can influence the power of the resulting procedure. It is possible to have smaller average sample size using the adaptive test statistic, even if the initial estimate of the treatment effect is wrong, compared to the sample size needed using a standard test statistic without an interim look and assuming a correct initial estimate of the effect. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In pharmaceutical‐related research, we usually use clinical trials methods to identify valuable treatments and compare their efficacy with that of a standard control therapy. Although clinical trials are essential for ensuring the efficacy and postmarketing safety of a drug, conducting clinical trials is usually costly and time‐consuming. Moreover, to allocate patients to the little therapeutic effect treatments is inappropriate due to the ethical and cost imperative. Hence, there are several 2‐stage designs in the literature where, for reducing cost and shortening duration of trials, they use the conditional power obtained from interim analysis results to appraise whether we should continue the lower efficacious treatments in the next stage. However, there is a lack of discussion about the influential impacts on the conditional power of a trial at the design stage in the literature. In this article, we calculate the optimal conditional power via the receiver operating characteristic curve method to assess the impacts on the quality of a 2‐stage design with multiple treatments and propose an optimal design using the minimum expected sample size for choosing the best or promising treatment(s) among several treatments under an optimal conditional power constraint. In this paper, we provide tables of the 2‐stage design subject to optimal conditional power for various combinations of design parameters and use an example to illustrate our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号