首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology.  相似文献   

2.

In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.

  相似文献   

3.
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model.  相似文献   

4.
In this paper, we examine a nonlinear regression (NLR) model with homoscedastic errors which follows a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family. The objective of using this family is to develop a robust NLR model. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and lightly/heavy-tailed distributions and is an alternative family to the well-known scale mixtures of skew-normal (SMSN) family studied by Branco and Dey [35]. A key feature of this study is using a new suitable hierarchical representation of the family to obtain maximum-likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and some natural real datasets and also compared to other well-known NLR models.  相似文献   

5.
The class of skew-symmetric distributions has received much attention in recent years. In this article, we introduce two distributions which can capture the skew-symmetric unimodal (e.g., skew-Laplace, skew-normal) and the skew-symmetric bimodal ones systematically. Their natural generalizations of the skew-Laplace and the skew-normal distributions provide greater flexibility in modeling real data distributions. These models also avoid the identifiability problems of using mixtures to fit bimodal data. The stochastic representations that provide the random number generation algorithms are presented. The explicit forms of the central moments indicated that the proposed distributions have wide ranges of the skewness and kurtosis measures.  相似文献   

6.
In this paper, we discuss the extension of some diagnostic procedures to multivariate measurement error models with scale mixtures of skew-normal distributions (Lachos et?al., Statistics 44:541?C556, 2010c). This class provides a useful generalization of normal (and skew-normal) measurement error models since the random term distributions cover symmetric, asymmetric and heavy-tailed distributions, such as skew-t, skew-slash and skew-contaminated normal, among others. Inspired by the EM algorithm proposed by Lachos et?al. (Statistics 44:541?C556, 2010c), we develop a local influence analysis for measurement error models, following Zhu and Lee??s (J R Stat Soc B 63:111?C126, 2001) approach. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and Cook??s well-known approach can be very difficult to apply to achieve local influence measures. Some useful perturbation schemes are also discussed. In addition, a score test for assessing the homogeneity of the skewness parameter vector is presented. Finally, the methodology is exemplified through a real data set, illustrating the usefulness of the proposed methodology.  相似文献   

7.
Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.  相似文献   

8.
The purpose of this paper is to develop diagnostics analysis for nonlinear regression models (NLMs) under scale mixtures of skew-normal (SMSN) distributions introduced by Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124]. This novel class of models provides a useful generalization of the symmetrical NLM [Vanegas LH, Cysneiros FJA. Assessment of diagnostic procedures in symmetrical nonlinear regression models. Comput. Statist. Data Anal. 2010;54:1002–1016] since the random terms distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as the skew-t, skew-slash, skew-contaminated normal distributions, among others. Motivated by the results given in Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124], we presented a score test for testing the homogeneity of the scale parameter and its properties are investigated through Monte Carlo simulations studies. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. The newly developed procedures are illustrated considering a real data set.  相似文献   

9.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method.  相似文献   

10.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.  相似文献   

11.
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally, the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study.  相似文献   

12.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies.  相似文献   

13.
This paper presents a robust probabilistic mixture model based on the multivariate skew-t-normal distribution, a skew extension of the multivariate Student’s t distribution with more powerful abilities in modelling data whose distribution seriously deviates from normality. The proposed model includes mixtures of normal, t and skew-normal distributions as special cases and provides a flexible alternative to recently proposed skew t mixtures. We develop two analytically tractable EM-type algorithms for computing maximum likelihood estimates of model parameters in which the skewness parameters and degrees of freedom are asymptotically uncorrelated. Standard errors for the parameter estimates can be obtained via a general information-based method. We also present a procedure of merging mixture components to automatically identify the number of clusters by fitting piecewise linear regression to the rescaled entropy plot. The effectiveness and performance of the proposed methodology are illustrated by two real-life examples.  相似文献   

14.
In practice, a financial or actuarial data set may be a skewed or heavy-tailed and this motivates us to study a class of distribution functions in risk management theory that provide more information about these characteristics resulting in a more accurate risk analysis. In this paper, we consider a multivariate tail conditional expectation (MTCE) for multivariate scale mixtures of skew-normal (SMSN) distributions. This class of distributions contains skewed distributions and some members of this class can be used to analyse heavy-tailed data sets. We also provide a closed form for TCE in a univariate skew-normal distribution framework. Numerical examples are also provided for illustration.  相似文献   

15.
This article addresses the density estimation problem using nonparametric Bayesian approach. It is considered hierarchical mixture models where the uncertainty about the mixing measure is modeled using the Dirichlet process. The main goal is to build more flexible models for density estimation. Extensions of the normal mixture model via Dirichlet process previously introduced in the literature are twofold. First, Dirichlet mixtures of skew-normal distributions are considered, say, in the first stage of the hierarchical model, the normal distribution is replaced by the skew-normal one. We also assume a skew-normal distribution as the center measure in the Dirichlet mixture of normal distributions. Some important results related to Bayesian inference in the location-scale skew-normal family are introduced. In particular, we obtain the stochastic representations for the full conditional distributions of the location and skewness parameters. The algorithm introduced by MacEachern and Müller in 1998 MacEachern, S.N., Müller, P. (1998). Estimating mixture of Dirichlet Process models. J. Computat. Graph. Statist. 7(2):223238.[Taylor & Francis Online], [Web of Science ®] [Google Scholar] is used to sample from the posterior distributions. The models are compared considering simulated data sets. Finally, the well-known Old Faithful Geyser data set is analyzed using the proposed models and the Dirichlet mixture of normal distributions. The model based on Dirichlet mixture of skew-normal distributions captured the data bimodality and skewness shown in the empirical distribution.  相似文献   

16.
Grubbs’s model (Grubbs, Encycl Stat Sci 3:42–549, 1983) is used for comparing several measuring devices, and it is common to assume that the random terms have a normal (or symmetric) distribution. In this paper, we discuss the extension of this model to the class of scale mixtures of skew-normal distributions. Our results provide a useful generalization of the symmetric Grubbs’s model (Osorio et al., Comput Stat Data Anal, 53:1249–1263, 2009) and the asymmetric skew-normal model (Montenegro et al., Stat Pap 51:701–715, 2010). We discuss the EM algorithm for parameter estimation and the local influence method (Cook, J Royal Stat Soc Ser B, 48:133–169, 1986) for assessing the robustness of these parameter estimates under some usual perturbation schemes. The results and methods developed in this paper are illustrated with a numerical example.  相似文献   

17.
The skew-generalized-normal distribution [Arellano-Valle, RB, Gómez, HW, Quintana, FA. A new class of skew-normal distributions. Comm Statist Theory Methods 2004;33(7):1465–1480] is a class of asymmetric normal distributions, which contains the normal and skew-normal distributions as special cases. The main virtues of this distribution is that it is easy to simulate from and it also supplies a genuine expectation–maximization (EM) algorithm for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models assuming skew-generalized-normal random errors and we develop a diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach would be more complicated to use to obtain measures of local influence. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

18.
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset.  相似文献   

19.
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors.  相似文献   

20.
The standard location and scale unrestricted (or unified) skew-normal (SUN) family studied by Arellano-Valle and Genton [On fundamental skew distributions. J Multivar Anal. 2005;96:93–116] and Arellano-Valle and Azzalini [On the unification of families of skew-normal distributions. Scand J Stat. 2006;33:561–574], allows the modelling of data which is symmetrically or asymmetrically distributed. The family has a number of advantages suitable for the analysis of stochastic processes such as Auto-Regressive Moving-Average (ARMA) models, including being closed under linear combinations, being able to satisfy the consistency condition of Kolmogorov’s theorem and providing the guarantee of the existence of such a SUN stochastic process. The family is able to be represented in a hierarchical form which can be used for the ease of simulation. In addition, it facilitates an EM-type algorithm to estimate the model parameters. The performances and suitability of the proposed model are demonstrated on simulations and using two real data sets in applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号