首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Under stratified random sampling, we develop a kth-order bootstrap bias-corrected estimator of the number of classes θ which exist in a study region. This research extends Smith and van Belle’s (1984) first-order bootstrap bias-corrected estimator under simple random sampling. Our estimator has applicability for many settings including: estimating the number of animals when there are stratified capture periods, estimating the number of species based on stratified random sampling of subunits (say, quadrats) from the region, and estimating the number of errors/defects in a product based on observations from two or more types of inspectors. When the differences between the strata are large, utilizing stratified random sampling and our estimator often results in superior performance versus the use of simple random sampling and its bootstrap or jackknife [Burnham and Overton (1978)] estimator. The superior performance is often associated with more observed classes, and we provide insights into optimal designation of the strata and optimal allocation of sample sectors to strata.  相似文献   

2.
Four strategies for bias correction of the maximum likelihood estimator of the parameters in the Type I generalized logistic distribution are studied. First, we consider an analytic bias-corrected estimator, which is obtained by deriving an analytic expression for the bias to order n ?1; second, a method based on modifying the likelihood equations; third, we consider the jackknife bias-corrected estimator; and fourth, we consider two bootstrap bias-corrected estimators. All bias correction estimators are compared by simulation. Finally, an example with a real data set is also presented.  相似文献   

3.
In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X [np]+1:n , 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.  相似文献   

4.
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A.G. Patriota and A.J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655–1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.  相似文献   

5.
Abstract

We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator’s pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.  相似文献   

6.
We develop and evaluate analytic and bootstrap bias-corrected maximum-likelihood estimators for the shape parameter in the Nakagami distribution. This distribution is widely used in a variety of disciplines, and the corresponding estimator of its scale parameter is trivially unbiased. We find that both ‘corrective’ and ‘preventive’ analytic approaches to eliminating the bias, to O(n ?2), are equally, and extremely, effective and simple to implement. As a bonus, the sizeable reduction in bias comes with a small reduction in the mean-squared error. Overall, we prefer analytic bias corrections in the case of this estimator. This preference is based on the relative computational costs and the magnitudes of the bias reductions that can be achieved in each case. Our results are illustrated with two real-data applications, including the one which provides the first application of the Nakagami distribution to data for ocean wave heights.  相似文献   

7.
Abstract

We propose and study properties of an estimator of the forecast error variance decomposition in the local projections framework. We find for empirically relevant sample sizes that, after being bias-corrected with bootstrap, our estimator performs well in simulations. We also illustrate the workings of our estimator empirically for monetary policy and productivity shocks. KEYWORDS: Forecast error variance decomposition; Local projections.  相似文献   

8.
Inference concerning the negative binomial dispersion parameter, denoted by c, is important in many biological and biomedical investigations. Properties of the maximum-likelihood estimator of c and its bias-corrected version have been studied extensively, mainly, in terms of bias and efficiency [W.W. Piegorsch, Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46 (1990), pp. 863–867; S.J. Clark and J.N. Perry, Estimation of the negative binomial parameter κ by maximum quasi-likelihood, Biometrics 45 (1989), pp. 309–316; K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185]. However, not much work has been done on the construction of confidence intervals (C.I.s) for c. The purpose of this paper is to study the behaviour of some C.I. procedures for c. We study, by simulations, three Wald type C.I. procedures based on the asymptotic distribution of the method of moments estimate (mme), the maximum-likelihood estimate (mle) and the bias-corrected mle (bcmle) [K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185] of c. All three methods show serious under-coverage. We further study parametric bootstrap procedures based on these estimates of c, which significantly improve the coverage probabilities. The bootstrap C.I.s based on the mle (Boot-MLE method) and the bcmle (Boot-BCM method) have coverages that are significantly better (empirical coverage close to the nominal coverage) than the corresponding bootstrap C.I. based on the mme, especially for small sample size and highly over-dispersed data. However, simulation results on lengths of the C.I.s show evidence that all three bootstrap procedures have larger average coverage lengths. Therefore, for practical data analysis, the bootstrap C.I. Boot-MLE or Boot-BCM should be used, although Boot-MLE method seems to be preferable over the Boot-BCM method in terms of both coverage and length. Furthermore, Boot-MLE needs less computation than Boot-BCM.  相似文献   

9.
Under the generalized linear models for a binary variable, an approximate bias of the maximum likelihood estimator of the coefficient, that is a special case of linear parameter in Cordeiro and McCullagh (1991), is derived without a calculation of the third-order derivative of the log likelihood function. Using the obtained approximate bias of the maximum likelihood estimator, a bias-corrected maximum likelihood estimator is defined. Through a simulation study, we show that the bias-corrected maximum likelihood estimator and its variance estimator have a better performance than the maximum likelihood estimator and its variance estimator.  相似文献   

10.
We consider two approaches for bias evaluation and reduction in the proportional hazards model proposed by Cox. The first one is an analytical approach in which we derive the n-1 bias term of the maximum partial likelihood estimator. The second approach consists of resampling methods, namely the jackknife and the bootstrap. We compare all methods through a comprehensive set of Monte Carlo simulations. The results suggest that bias-corrected estimators have better finite-sample performance than the standard maximum partial likelihood estimator. There is some evidence oithe bootstrap-correction superiority over the jackknife-correction but its performance is similar to the analytical estimator. Finaily an application iliustrates the proposed approaches.  相似文献   

11.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

12.
A new class of Bayesian estimators for a proportion in multistage binomial designs is considered. Priors belong to the beta-J distribution family, which is derived from the Fisher information associated with the design. The transposition of the beta parameters of the Haldane and the uniform priors in fixed binomial experiments into the beta-J distribution yields bias-corrected versions of these priors in multistage designs. We show that the estimator of the posterior mean based on the corrected Haldane prior and the estimator of the posterior mode based on the corrected uniform prior have good frequentist properties. An easy-to-use approximation of the estimator of the posterior mode is provided. The new Bayesian estimators are compared to Whitehead's and the uniformly minimum variance estimators through several multistage designs. Last, the bias of the estimator of the posterior mode is derived for a particular case.  相似文献   

13.
A two-point estimator is proposed for the proportion of studies with positive trends among a collection of studies, some of which may demonstrate negative trends. The proposed estimator is the y-intercept of the secant line joining the points (a, F?(a)) and (b, F?(b)), where F?(p) is the empirical distribution function of p-values from one-tailed tests for positive trend derived from the individual studies. Although this estimator is negatively biased for any choice of the points 0 ≤ a < b ≤ 1, the bias is less than that of the previously proposed one-point estimator defined by setting b = 1. The bias of the two-point estimator is smallest when a and b approach the inflection point of the true distribution function, E [F?(p)]. The utility of the two-point estimator is demonstrated by using it to estimate the number of male-mouse liver carcinogens among carcinogenicity studies conducted by the National Toxicology Program.  相似文献   

14.
We derive analytic expressions for the biases of the maximum likelihood estimators of the scale parameter in the half-logistic distribution with known location, and of the location parameter when the latter is unknown. Using these expressions to bias-correct the estimators is highly effective, without adverse consequences for estimation mean squared error. The overall performance of the first of these bias-corrected estimators is slightly better than that of a bootstrap bias-corrected estimator. The bias-corrected estimator of the location parameter significantly out-performs its bootstrapped-based counterpart. Taking computational costs into account, the analytic bias corrections clearly dominate the use of the bootstrap.  相似文献   

15.
Abstract

In his Fisher Lecture, Efron (Efron, B. R. A. (1998 Efron, B. R. A. 1998. Fisher in the 21st century (with discussion). Statistical Science, 13: 95122. [Crossref], [Web of Science ®] [Google Scholar]). Fisher in the 21st Century (with discussion). Statistical Science 13:95–122) pointed out that maximum likelihood estimates (MLE) can be badly biased in certain situations involving many nuisance parameters. He predicted that with modern computing equipment a computer-modified version of the MLE that was less biased could become the default estimator of choice in applied problems in the 21st century. This article discusses three modifications—Lindsay's conditional likelihood, integrated likelihood, and Bartlett's bias-corrected estimating function. Each is evaluated through a study of the bias and MSE of the estimates in a stratified Weibull model with a moderate number of nuisance parameters. In Lindsay's estimating equation, three different methods for estimation of the nuisance parameters are evaluated—the restricted maximum likelihood estimate (RMLE), a Bayes estimator, and a linear Bayes estimator. In our model, the conditional likelihood with RMLE of the nuisance parameters is equivalent to Bartlett's bias-corrected estimating function. In the simulation we show that Lindsay's conditional likelihood is in general preferred, irrespective of the estimator of the nuisance parameters. Although the integrated likelihood has smaller MSE when the precise nature of the prior distribution of the nuisance parameters is known, this approach may perform poorly in cases where the prior distribution of the nuisance parameters is not known, especially using a non-informative prior. In practice, Lindsay's method using the RMLE of the nuisance parameters is recommended.  相似文献   

16.
The present article discusses the statistical distribution for the estimator of Rosenthal's ‘file-drawer’ number NR, which is an estimator of unpublished studies in meta-analysis. We calculate the probability distribution function of NR. This is achieved based on the central limit theorem and the proposition that certain components of the estimator NR follow a half-normal distribution, derived from the standard normal distribution. Our proposed distributions are supported by simulations and investigation of convergence.  相似文献   

17.
We develop and study in the framework of Pareto-type distributions a class of nonparametric kernel estimators for the conditional second order tail parameter. The estimators are obtained by local estimation of the conditional second order parameter using a moving window approach. Asymptotic normality of the proposed class of kernel estimators is proven under some suitable conditions on the kernel function and the conditional tail quantile function. The nonparametric estimators for the second order parameter are subsequently used to obtain a class of bias-corrected kernel estimators for the conditional tail index. In particular it is shown how for a given kernel function one obtains a bias-corrected kernel function, and that replacing the second order parameter in the latter with a consistent estimator does not change the limiting distribution of the bias-corrected estimator for the conditional tail index. The finite sample behavior of some specific estimators is illustrated with a simulation experiment. The developed methodology is also illustrated on fire insurance claim data.  相似文献   

18.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

19.
This article considers fixed effects (FE) estimation for linear panel data models under possible model misspecification when both the number of individuals, n, and the number of time periods, T, are large. We first clarify the probability limit of the FE estimator and argue that this probability limit can be regarded as a pseudo-true parameter. We then establish the asymptotic distributional properties of the FE estimator around the pseudo-true parameter when n and T jointly go to infinity. Notably, we show that the FE estimator suffers from the incidental parameters bias of which the top order is O(T? 1), and even after the incidental parameters bias is completely removed, the rate of convergence of the FE estimator depends on the degree of model misspecification and is either (nT)? 1/2 or n? 1/2. Second, we establish asymptotically valid inference on the (pseudo-true) parameter. Specifically, we derive the asymptotic properties of the clustered covariance matrix (CCM) estimator and the cross-section bootstrap, and show that they are robust to model misspecification. This establishes a rigorous theoretical ground for the use of the CCM estimator and the cross-section bootstrap when model misspecification and the incidental parameters bias (in the coefficient estimate) are present. We conduct Monte Carlo simulations to evaluate the finite sample performance of the estimators and inference methods, together with a simple application to the unemployment dynamics in the U.S.  相似文献   

20.
Hartigan (1975) defines the number q of clusters in a d ‐variate statistical population as the number of connected components of the set {f > c}, where f denotes the underlying density function on Rd and c is a given constant. Some usual cluster algorithms treat q as an input which must be given in advance. The authors propose a method for estimating this parameter which is based on the computation of the number of connected components of an estimate of {f > c}. This set estimator is constructed as a union of balls with centres at an appropriate subsample which is selected via a nonparametric density estimator of f. The asymptotic behaviour of the proposed method is analyzed. A simulation study and an example with real data are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号