首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this article, we consider a simple step-stress life test in the presence of exponentially distributed competing risks. It is assumed that the stress is changed when a pre-specified number of failures takes place. The data is assumed to be Type-II censored. We obtain the maximum likelihood estimators of the model parameters and the exact conditional distributions of the maximum likelihood estimators. Based on the conditional distribution, approximate confidence intervals (CIs) of unknown parameters have been constructed. Percentile bootstrap CIs of model parameters are also provided. Optimal test plan is addressed. We perform an extensive simulation study to observe the behaviour of the proposed method. The performances are quite satisfactory. Finally we analyse two data sets for illustrative purposes.  相似文献   

2.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

3.
In this paper, maximum likelihood and Bayes estimators of the parameters, reliability and hazard functions have been obtained for two-parameter bathtub-shaped lifetime distribution when sample is available from progressive Type-II censoring scheme. The Markov chain Monte Carlo (MCMC) method is used to compute the Bayes estimates of the model parameters. It has been assumed that the parameters have gamma priors and they are independently distributed. Gibbs within the Metropolis–Hasting algorithm has been applied to generate MCMC samples from the posterior density function. Based on the generated samples, the Bayes estimates and highest posterior density credible intervals of the unknown parameters as well as reliability and hazard functions have been computed. The results of Bayes estimators are obtained under both the balanced-squared error loss and balanced linear-exponential (BLINEX) loss. Moreover, based on the asymptotic normality of the maximum likelihood estimators the approximate confidence intervals (CIs) are obtained. In order to construct the asymptotic CI of the reliability and hazard functions, we need to find the variance of them, which are approximated by delta and Bootstrap methods. Two real data sets have been analyzed to demonstrate how the proposed methods can be used in practice.  相似文献   

4.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

5.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

6.
In this article, a competing risks model based on exponential distributions is considered under the adaptive Type-II progressively censoring scheme introduced by Ng et al. [2009, Naval Research Logistics 56:687-698], for life testing or reliability experiment. Moreover, we assumed that some causes of failures are unknown. The maximum likelihood estimators (MLEs) of unknown parameters are established. The exact conditional and the asymptotic distributions of the obtained estimators are derived to construct the confidence intervals as well as the two different bootstraps of different unknown parameters. Under suitable priors on the unknown parameters, Bayes estimates and the corresponding two sides of Bayesian probability intervals are obtained. Also, for the purpose of evaluating the average bias and mean square error of the MLEs, and comparing the confidence intervals based on all mentioned methods, a simulation study was carried out. Finally, we present one real dataset to conduct the proposed methods.  相似文献   

7.
One of the common problems encountered in applied statistics is that of comparing two proportions from stratified samples. One approach to this problem is via inference on the corresponding odds ratio. In this paper, the various point and interval estimators of and hypothesis testing procedures for a common odds ratio from multiple 2 ×2 tables are reviewed. Based On research to date, the conditional maximum likelihood and Mantel-Haenszel estimators are recommended as the point estimators of choice. Neither confidence intervals nor hypothesis testing metthods have been studied as well as the point estimators, but there is a confidence interval method associated with the Mantel-Haenszel estimator that is a good choice.  相似文献   

8.
We discuss a new way of constructing pointwise confidence intervals for the distribution function in the current status model. The confidence intervals are based on the smoothed maximum likelihood estimator, using local smooth functional theory and normal limit distributions. Bootstrap methods for constructing these intervals are considered. Other methods to construct confidence intervals, using the non‐standard limit distribution of the (restricted) maximum likelihood estimator, are compared with our approach via simulations and real data applications.  相似文献   

9.
In this paper, we consider Marshall–Olkin extended exponential (MOEE) distribution which is capable of modelling various shapes of failure rates and aging criteria. The purpose of this paper is three fold. First, we derive the maximum likelihood estimators of the unknown parameters and the observed the Fisher information matrix from progressively type-II censored data. Next, the Bayes estimates are evaluated by applying Lindley’s approximation method and Markov Chain Monte Carlo method under the squared error loss function. We have performed a simulation study in order to compare the proposed Bayes estimators with the maximum likelihood estimators. We also compute 95% asymptotic confidence interval and symmetric credible interval along with the coverage probability. Third, we consider one-sample and two-sample prediction problems based on the observed sample and provide appropriate predictive intervals under classical as well as Bayesian framework. Finally, we analyse a real data set to illustrate the results derived.  相似文献   

10.
This paper considers the design of accelerated life test (ALT) sampling plans under Type I progressive interval censoring with random removals. We assume that the lifetime of products follows a Weibull distribution. Two levels of constant stress higher than the use condition are used. The sample size and the acceptability constant that satisfy given levels of producer's risk and consumer's risk are found. In particular, the optimal stress level and the allocation proportion are obtained by minimizing the generalized asymptotic variance of the maximum likelihood estimators of the model parameters. Furthermore, for validation purposes, a Monte Carlo simulation is conducted to assess the true probability of acceptance for the derived sampling plans.  相似文献   

11.
In this paper, the reliability of a system is discussed when the strength of the system and the stress imposed on it are independent, non-identical exponentiated Pareto distributed random variables. Different point estimations and interval estimations are proposed. The point estimators obtained are maximum likelihood, uniformly minimum variance unbiased and Bayesian estimators. The interval estimations obtained are approximate, exact, bootstrap-p and bootstrap-t confidence intervals and Bayesian credible interval. Different methods and the corresponding confidence intervals are compared using Monte-carlo simulations.  相似文献   

12.
Conditional confidence intervals for the location parameter of the double exponential distribution based on maximum likelihood estimators conditioned on a set of ancillary statistics and the corresponding unconditional confidence intervals based on the maximum likelihood estimators alone are compared in two ways. Monte Carlo techniques are used and the conditional approach appears to give slightly better results although agreement as n becomes larger is noted  相似文献   

13.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes.  相似文献   

14.
Accelerated life-testing (ALT) is a very useful technique for examining the reliability of highly reliable products. It allows the experimenter to obtain failure data more quickly at increased stress levels than under normal operating conditions. A step-stress model is one special class of ALT, and in this article we consider a simple step-stress model under the cumulative exposure model with lognormally distributed lifetimes in the presence of Type-I censoring. We then discuss inferential methods for the unknown parameters of the model by the maximum likelihood estimation method. Some numerical methods, such as the Newton–Raphson and quasi-Newton methods, are discussed for solving the corresponding non-linear likelihood equations. Next, we discuss the construction of confidence intervals for the unknown parameters based on (i) the asymptotic normality of the maximum likelihood estimators (MLEs), and (ii) parametric bootstrap resampling technique. A Monte Carlo simulation study is carried out to examine the performance of these methods of inference. Finally, a numerical example is presented in order to illustrate all the methods of inference developed here.  相似文献   

15.
Arnab Koley  Ayon Ganguly 《Statistics》2017,51(6):1304-1325
Kundu and Gupta [Analysis of hybrid life-tests in presence of competing risks. Metrica. 2007;65:159–170] provided the analysis of Type-I hybrid censored competing risks data, when the lifetime distributions of the competing cause of failures follows exponential distribution. In this paper, we consider the analysis of Type-II hybrid censored competing risks data. It is assumed that latent lifetime distributions of the competing causes of failures follow independent exponential distributions with different scale parameters. It is observed that the maximum likelihood estimators of the unknown parameters do not always exist. We propose the modified estimators of the scale parameters, which coincide with the corresponding maximum likelihood estimators when they exist, and asymptotically they are equivalent. We obtain the exact distribution of the proposed estimators. Using the exact distributions of the proposed estimators, associated confidence intervals are obtained. The asymptotic and bootstrap confidence intervals of the unknown parameters are also provided. Further, Bayesian inference of some unknown parametric functions under a very flexible Beta-Gamma prior is considered. Bayes estimators and associated credible intervals of the unknown parameters are obtained using the Monte Carlo method. Extensive Monte Carlo simulations are performed to see the effectiveness of the proposed estimators and one real data set has been analysed for the illustrative purposes. It is observed that the proposed model and the method work quite well for this data set.  相似文献   

16.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

17.
Abstract

Under progressive Type-II censoring, inference of stress-strength reliability (SSR) is studied for a general family of lower truncated distributions. When the lifetime models of the strength and stress variables have arbitrary and common parameters, maximum likelihood and pivotal quantities based generalized estimators of SSR are established, respectively. Confidence intervals are constructed based on generalized pivotal quantities and bootstrap technique under different parameter cases as well. In addition, to compare the equivalence of the strength and stress parameters, likelihood ratio testing of interested parameters is provided as a complementary. Simulation studies and two real-life data examples are provided to investigate the performance of proposed methods.  相似文献   

18.
In many practical situations, complete data are not available in lifetime studies. Many of the available observations are right censored giving survival information up to a noted time and not the exact failure times. This constitutes randomly censored data. In this paper, we consider Maxwell distribution as a survival time model. The censoring time is also assumed to follow a Maxwell distribution with a different parameter. Maximum likelihood estimators and confidence intervals for the parameters are derived with randomly censored data. Bayes estimators are also developed with inverted gamma priors and generalized entropy loss function. A Monte Carlo simulation study is performed to compare the developed estimation procedures. A real data example is given at the end of the study.  相似文献   

19.
In this paper, the estimation of parameters for a three-parameter Weibull distribution based on progressively Type-II right censored sample is studied. Different estimation procedures for complete sample are generalized to the case with progressively censored data. These methods include the maximum likelihood estimators (MLEs), corrected MLEs, weighted MLEs, maximum product spacing estimators and least squares estimators. We also proposed the use of a censored estimation method with one-step bias-correction to obtain reliable initial estimates for iterative procedures. These methods are compared via a Monte Carlo simulation study in terms of their biases, root mean squared errors and their rates of obtaining reliable estimates. Recommendations are made from the simulation results and a numerical example is presented to illustrate all of the methods of inference developed here.  相似文献   

20.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号