首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors consider hidden Markov models (HMMs) whose latent process has m ≥ 2 states and whose state‐dependent distributions arise from a general one‐parameter family. They propose a test of the hypothesis m = 2. Their procedure is an extension to HMMs of the modified likelihood ratio statistic proposed by Chen, Chen & Kalbfleisch (2004) for testing two states in a finite mixture. The authors determine the asymptotic distribution of their test under the hypothesis m = 2 and investigate its finite‐sample properties in a simulation study. Their test is based on inference for the marginal mixture distribution of the HMM. In order to illustrate the additional difficulties due to the dependence structure of the HMM, they show how to test general regular hypotheses on the marginal mixture of HMMs via a quasi‐modified likelihood ratio. They also discuss two applications.  相似文献   

2.
Testing for homogeneity in finite mixture models has been investigated by many researchers. The asymptotic null distribution of the likelihood ratio test (LRT) is very complex and difficult to use in practice. We propose a modified LRT for homogeneity in finite mixture models with a general parametric kernel distribution family. The modified LRT has a χ-type of null limiting distribution and is asymptotically most powerful under local alternatives. Simulations show that it performs better than competing tests. They also reveal that the limiting distribution with some adjustment can satisfactorily approximate the quantiles of the test statistic, even for moderate sample sizes.  相似文献   

3.
Testing homogeneity is a fundamental problem in finite mixture models. It has been investigated by many researchers and most of the existing works have focused on the univariate case. In this article, the authors extend the use of the EM‐test for testing homogeneity to multivariate mixture models. They show that the EM‐test statistic asymptotically has the same distribution as a certain transformation of a single multivariate normal vector. On the basis of this result, they suggest a resampling procedure to approximate the P‐value of the EM‐test. Simulation studies show that the EM‐test has accurate type I errors and adequate power, and is more powerful and computationally efficient than the bootstrap likelihood ratio test. Two real data sets are analysed to illustrate the application of our theoretical results. The Canadian Journal of Statistics 39: 218–238; 2011 © 2011 Statistical Society of Canada  相似文献   

4.
A general testing procedure is proposed to multivariately test for equality of p variances among k groups. The procedure applies a multivariate analysis of variance on an appropriate measure of spread for the uncensored original observations. Three such measures of spread are compared in a simulation experiment which considered two and three variables with equal and unequal sample sizes for the null and alternative hypotheses for Gaussian, Student's t (8, 12, and 20 degrees of freedom) and gamma (α=2,4,6 and 10) distributions . The likelihood ratio test (Box, 1949) was included in the above simulations. The results suggest that if one chooses a measure of spread appropriate for the distribution of the original observations, the proposed MANOVA-based testing procedure is robust and reasonably powerful. Using this procedure for the normal distribution, similar power was observed to that of the likelihood ratio test when the variables were uncorrelated or had little positive correlation.  相似文献   

5.
The authors study the asymptotic behaviour of the likelihood ratio statistic for testing homogeneity in the finite mixture models of a general parametric distribution family. They prove that the limiting distribution of this statistic is the squared supremum of a truncated standard Gaussian process. The autocorrelation function of the Gaussian process is explicitly presented. A re‐sampling procedure is recommended to obtain the asymptotic p‐value. Three kernel functions, normal, binomial and Poisson, are used in a simulation study which illustrates the procedure.  相似文献   

6.
It is generally assumed that the likelihood ratio statistic for testing the null hypothesis that data arise from a homoscedastic normal mixture distribution versus the alternative hypothesis that data arise from a heteroscedastic normal mixture distribution has an asymptotic χ 2 reference distribution with degrees of freedom equal to the difference in the number of parameters being estimated under the alternative and null models under some regularity conditions. Simulations show that the χ 2 reference distribution will give a reasonable approximation for the likelihood ratio test only when the sample size is 2000 or more and the mixture components are well separated when the restrictions suggested by Hathaway (Ann. Stat. 13:795–800, 1985) are imposed on the component variances to ensure that the likelihood is bounded under the alternative distribution. For small and medium sample sizes, parametric bootstrap tests appear to work well for determining whether data arise from a normal mixture with equal variances or a normal mixture with unequal variances.  相似文献   

7.
The number of components is an important feature in finite mixture models. Because of the irregularity of the parameter space, the log-likelihood-ratio statistic does not have a chi-square limit distribution. It is very difficult to find a test with a specified significance level, and this is especially true for testing k — 1 versus k components. Most of the existing work has concentrated on finding a comparable approximation to the limit distribution of the log-likelihood-ratio statistic. In this paper, we use a statistic similar to the usual log likelihood ratio, but its null distribution is asymptotically normal. A simulation study indicates that the method has good power at detecting extra components. We also discuss how to improve the power of the test, and some simulations are performed.  相似文献   

8.
Summary.  We consider the problem of testing null hypotheses that include restrictions on the variance component in a linear mixed model with one variance component and we derive the finite sample and asymptotic distribution of the likelihood ratio test and the restricted likelihood ratio test. The spectral representations of the likelihood ratio test and the restricted likelihood ratio test statistics are used as the basis of efficient simulation algorithms of their null distributions. The large sample χ 2 mixture approximations using the usual asymptotic theory for a null hypothesis on the boundary of the parameter space have been shown to be poor in simulation studies. Our asymptotic calculations explain these empirical results. The theory of Self and Liang applies only to linear mixed models for which the data vector can be partitioned into a large number of independent and identically distributed subvectors. One-way analysis of variance and penalized splines models illustrate the results.  相似文献   

9.
This article investigates the large sample interval mapping method for genetic trait loci (GTL) in a finite non-linear regression mixture model. The general model includes most commonly used kernel functions, such as exponential family mixture, logistic regression mixture and generalized linear mixture models, as special cases. The populations derived from either the backcross or intercross design are considered. In particular, unlike all existing results in the literature in the finite mixture models, the large sample results presented in this paper do not require the boundness condition on the parametric space. Therefore, the large sample theory presented in this article possesses general applicability to the interval mapping method of GTL in genetic research. The limiting null distribution of the likelihood ratio test statistics can be utilized easily to determine the threshold values or p-values required in the interval mapping. The limiting distribution is proved to be free of the parameter values of null model and free of the choice of a kernel function. Extension to the multiple marker interval GTL detection is also discussed. Simulation study results show favorable performance of the asymptotic procedure when sample sizes are moderate.  相似文献   

10.
It is well known that the testing of zero variance components is a non-standard problem since the null hypothesis is on the boundary of the parameter space. The usual asymptotic chi-square distribution of the likelihood ratio and score statistics under the null does not necessarily hold because of this null hypothesis. To circumvent this difficulty in balanced linear growth curve models, we introduce an appropriate test statistic and suggest a permutation procedure to approximate its finite-sample distribution. The proposed test alleviates the necessity of any distributional assumptions for the random effects and errors and can easily be applied for testing multiple variance components. Our simulation studies show that the proposed test has Type I error rate close to the nominal level. The power of the proposed test is also compared with the likelihood ratio test in the simulations. An application on data from an orthodontic study is presented and discussed.  相似文献   

11.
This article presents a note on the modified likelihood ratio test for homogeneity in beta mixture models. Under consistency of the penalized maximum likelihood estimators, the limiting distribution of the test statistic converges to the chi-bar-squared distributions. The statistic degenerates to zero with a weight due to the negative definiteness of a complicated random matrix. The probability that this matrix is negative definite is related to the parameter values under the homogeneity hypothesis. The dependency pattern enables the introduction of an upper bound on the asymptotic null distribution. Simulation study is investigated to verify the accuracy of the results.  相似文献   

12.
We define the mixture likelihood approach to clustering by discussing the sampling distribution of the likelihood ratio test of the null hypothesis that we have observed a sample of observations of a variable having the bivariate normal distribution versus the alternative that the variable has the bivariate normal mixture with unequal means and common within component covariance matrix. The empirical distribution of the likelihood ratio test indicates that convergence to the chi-squared distribution with 2 df is at best very slow, that the sample size should be 5000 or more for the chi-squared result to hold, and that for correlations between 0.1 and 0.9 there is little, if any, dependence of the null distribution on the correlation. Our simulation study suggests a heuristic function based on the gamma.  相似文献   

13.
In this paper, we consider a new mixture of varying coefficient models, in which each mixture component follows a varying coefficient model and the mixing proportions and dispersion parameters are also allowed to be unknown smooth functions. We systematically study the identifiability, estimation and inference for the new mixture model. The proposed new mixture model is rather general, encompassing many mixture models as its special cases such as mixtures of linear regression models, mixtures of generalized linear models, mixtures of partially linear models and mixtures of generalized additive models, some of which are new mixture models by themselves and have not been investigated before. The new mixture of varying coefficient model is shown to be identifiable under mild conditions. We develop a local likelihood procedure and a modified expectation–maximization algorithm for the estimation of the unknown non‐parametric functions. Asymptotic normality is established for the proposed estimator. A generalized likelihood ratio test is further developed for testing whether some of the unknown functions are constants. We derive the asymptotic distribution of the proposed generalized likelihood ratio test statistics and prove that the Wilks phenomenon holds. The proposed methodology is illustrated by Monte Carlo simulations and an analysis of a CO2‐GDP data set.  相似文献   

14.
Summary.  We establish asymptotic theory for both the maximum likelihood and the maximum modified likelihood estimators in mixture regression models. Moreover, under specific and reasonable conditions, we show that the optimal convergence rate of n −1/4 for estimating the mixing distribution is achievable for both the maximum likelihood and the maximum modified likelihood estimators. We also derive the asymptotic distributions of two log-likelihood ratio test statistics for testing homogeneity and we propose a resampling procedure for approximating the p -value. Simulation studies are conducted to investigate the empirical performance of the two test statistics. Finally, two real data sets are analysed to illustrate the application of our theoretical results.  相似文献   

15.
Testing the equal means hypothesis of a bivariate normal distribution with homoscedastic varlates when the data are incomplete is considered. If the correlational parameter, ρ, is known, the well-known theory of the general linear model is easily employed to construct the likelihood ratio test for the two sided alternative. A statistic, T, for the case of ρ unknown is proposed by direct analogy to the likelihood ratio statistic when ρ is known. The null and nonnull distribution of T is investigated by Monte Carlo techniques. It is concluded that T may be compared to the conventional t distribution for testing the null hypothesis and that this procedure results in a substantial increase in power-efficiency over the procedure based on the paired t test which ignores the incomplete data. A Monte Carlo comparison to two statistics proposed by Lin and Stivers (1974) suggests that the test based on T is more conservative than either of their statistics.  相似文献   

16.
The phenotype of a quantitative trait locus (QTL) is often modeled by a finite mixture of normal distributions. If the QTL effect depends on the number of copies of a specific allele one carries, then the mixture model has three components. In this case, the mixing proportions have a binomial structure according to the Hardy–Weinberg equilibrium. In the search for QTL, a significance test of homogeneity against the Hardy–Weinberg normal mixture model alternative is an important first step. The LOD score method, a likelihood ratio test used in genetics, is a favored choice. However, there is not yet a general theory for the limiting distribution of the likelihood ratio statistic in the presence of unknown variance. This paper derives the limiting distribution of the likelihood ratio statistic, which can be described by the supremum of a quadratic form of a Gaussian process. Further, the result implies that the distribution of the modified likelihood ratio statistic is well approximated by a chi-squared distribution. Simulation results show that the approximation has satisfactory precision for the cases considered. We also give a real-data example.  相似文献   

17.
The testing problem for the order of finite mixture models has a long history and remains an active research topic. Since Ghosh & Sen (1985) revealed the hard-to-manage asymptotic properties of the likelihood ratio test, many successful alternative approaches have been developed. The most successful attempts include the modified likelihood ratio test and the EM-test, which lead to neat solutions for finite mixtures of univariate normal distributions, finite mixtures of single-parameter distributions, and several mixture-like models. The problem remains challenging, and there is still no generic solution for location-scale mixtures. In this article, we provide an EM-test solution for homogeneity for finite mixtures of location-scale family distributions. This EM-test has nonstandard limiting distributions, but we are able to find the critical values numerically. We use computer experiments to obtain appropriate values for the tuning parameters. A simulation study shows that the fine-tuned EM-test has close to nominal type I errors and very good power properties. Two application examples are included to demonstrate the performance of the EM-test.  相似文献   

18.
In the present paper, a semiparametric maximum-likelihood-type test statistic is proposed and proved to have the same limit null distribution as the classical parametric likelihood one. Under some mild conditions, the limiting law of the proposed test statistic, suitably normalized and centralized, is shown to be double exponential, under the null hypothesis of no change in the parameter of copula models. We also discuss the Gaussian-type approximations for the semiparametric likelihood ratio. The asymptotic distribution of the proposed statistic under specified alternatives is shown to be normal, and an approximation to the power function is given. Simulation results are provided to illustrate the finite sample performance of the proposed statistical tests based on the double exponential and Gaussian-type approximations.  相似文献   

19.
The problems that arise when using the likelihood ratio test for the identification of a mixture distribution are well known: non-identifiability of the parameters and null hypothesis corresponding to a boundary point of the parameter space. In their approach to the problem of testing homogeneity against a mixture with two components, Ghosh and Sen took into account these specific problems. Under general assumptions, they obtained the asymptotic distribution of the likelihood ratio test statistic. However, their result requires a separation condition which is not completely satisfactory. We show that it is possible to remove this condition with assumptions which involve the second derivatives of the density only.  相似文献   

20.
It is well known that there exist multiple roots of the likelihood equations for finite normal mixture models. Selecting a consistent root for finite normal mixture models has long been a challenging problem. Simply using the root with the largest likelihood will not work because of the spurious roots. In addition, the likelihood of normal mixture models with unequal variance is unbounded and thus its maximum likelihood estimate (MLE) is not well defined. In this paper, we propose a simple root selection method for univariate normal mixture models by incorporating the idea of goodness of fit test. Our new method inherits both the consistency properties of distance estimators and the efficiency of the MLE. The new method is simple to use and its computation can be easily done using existing R packages for mixture models. In addition, the proposed root selection method is very general and can be also applied to other univariate mixture models. We demonstrate the effectiveness of the proposed method and compare it with some other existing methods through simulation studies and a real data application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号