首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
 文章讨论了含有随机效应的面板数据模型,利用非对称Laplace分布与分位回归之间的关系,文章建立了一种贝叶斯分层分位回归模型。通过对非对称Laplace分布的分解,文章给出了Gibbs抽样算法下模型参数的点估计及区间估计,模拟结果显示,在处理含随机效应的面板数据模型中,特别是在误差非正态的情况下,本文的方法优于传统的均值模型方法。文章最后利用新方法对我国各地区经济与就业面板数据进行了实证研究,得到了有利于宏观调控的有用信息。  相似文献   

2.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

3.
In this paper, we consider the finite mixture of quantile regression model from a Bayesian perspective by assuming the errors have the asymmetric Laplace distribution (ALD), and develop the Gibbs sampling algorithm to estimate various quantile conditional on covariate in different groups using the Normal-Exponential representation of the ALD. We conduct several simulations under different error distributions to demonstrate the performance of the algorithm, and finally apply it to analyse a real data set, finding that the procedure has good performance.  相似文献   

4.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

5.
Dealing with incomplete data is a pervasive problem in statistical surveys. Bayesian networks have been recently used in missing data imputation. In this research, we propose a new methodology for the multivariate imputation of missing data using discrete Bayesian networks and conditional Gaussian Bayesian networks. Results from imputing missing values in coronary artery disease data set and milk composition data set as well as a simulation study from cancer-neapolitan network are presented to demonstrate and compare the performance of three Bayesian network-based imputation methods with those of multivariate imputation by chained equations (MICE) and the classical hot-deck imputation method. To assess the effect of the structure learning algorithm on the performance of the Bayesian network-based methods, two methods called Peter-Clark algorithm and greedy search-and-score have been applied. Bayesian network-based methods are: first, the method introduced by Di Zio et al. [Bayesian networks for imputation, J. R. Stat. Soc. Ser. A 167 (2004), 309–322] in which, each missing item of a variable is imputed using the information given in the parents of that variable; second, the method of Di Zio et al. [Multivariate techniques for imputation based on Bayesian networks, Neural Netw. World 15 (2005), 303–310] which uses the information in the Markov blanket set of the variable to be imputed and finally, our new proposed method which applies the whole available knowledge of all variables of interest, consisting the Markov blanket and so the parent set, to impute a missing item. Results indicate the high quality of our new proposed method especially in the presence of high missingness percentages and more connected networks. Also the new method have shown to be more efficient than the MICE method for small sample sizes with high missing rates.  相似文献   

6.
With rapid development of computing technology, Bayesian statistics have increasingly gained more attention in various areas of public health. However, the full potential of Bayesian sequential methods applied to vaccine safety surveillance has not yet been realized, despite acknowledged practical benefits and philosophical advantages of Bayesian statistics. In this paper, we describe how sequential analysis can be performed in a Bayesian paradigm in the field of vaccine safety. We compared the performance of the frequentist sequential method, specifically, Maximized Sequential Probability Ratio Test (MaxSPRT), and a Bayesian sequential method using simulations and a real world vaccine safety example. The performance is evaluated using three metrics: false positive rate, false negative rate, and average earliest time to signal. Depending on the background rate of adverse events, the Bayesian sequential method could significantly improve the false negative rate and decrease the earliest time to signal. We consider the proposed Bayesian sequential approach to be a promising alternative for vaccine safety surveillance.  相似文献   

7.
In this article, we develop an empirical Bayesian approach for the Bayesian estimation of parameters in four bivariate exponential (BVE) distributions. We have opted for gamma distribution as a prior for the parameters of the model in which the hyper parameters have been estimated based on the method of moments and maximum likelihood estimates (MLEs). A simulation study was conducted to compute empirical Bayesian estimates of the parameters and their standard errors. We use moment estimators or MLEs to estimate the hyper parameters of the prior distributions. Furthermore, we compare the posterior mode of parameters obtained by different prior distributions and the Bayesian estimates based on gamma priors are very close to the true values as compared to improper priors. We use MCMC method to obtain the posterior mean and compared the same using the improper priors and the classical estimates, MLEs.  相似文献   

8.
We develop a Bayesian estimation method to non-parametric mixed-effect models under shape-constrains. The approach uses a hierarchical Bayesian framework and characterizations of shape-constrained Bernstein polynomials (BPs). We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of BPs to ensure the desired shape constraints. The small sample properties of the Bayesian shape-constrained estimators across a range of functions are provided via simulation studies. Two real data analysis are given to illustrate the application of the proposed method.  相似文献   

9.
ABSTRACT

This article proposes a development of detecting patches of additive outliers in autoregressive time series models. The procedure improves the existing detection methods via Gibbs sampling. We combine the Bayesian method and the Kalman smoother to present some candidate models of outlier patches and the best model with the minimum Bayesian information criterion (BIC) is selected among them. We propose that this combined Bayesian and Kalman method (CBK) can reduce the masking and swamping effects about detecting patches of additive outliers. The correctness of the method is illustrated by simulated data and then by analyzing a real set of observations.  相似文献   

10.
This paper is concerned with Bayesian estimation and prediction in the context of start-up demonstration tests in which rejection of a unit is possible when a pre-specified number of failures is observed prior to obtaining the number of consecutive successes required for acceptance of the unit. A method for implementing Bayesian inference on the probability of success is developed for use when the test result of each start-up is not reported or even recorded, and only the number of trials until termination of the testing is available. Some errors in the related literature on the Bayesian analysis of start-up demonstration tests are corrected. The method developed in this paper is a Markov chain Monte Carlo (MCMC) method incorporating data augmentation, and it additionally enables Bayesian posterior inference on the number of failures given the number of start-up trials until termination to be made, along with Bayesian predictive inferences on the number of start-up trials and the number of failures until termination for any future run of the start-up demonstration test. An illustrative example is also included.  相似文献   

11.
The Kim filter (KF) approximation is widely used for the likelihood calculation of dynamic linear models with Markov regime-switching parameters. However, despite its popularity, its approximation error has not yet been examined rigorously. Therefore, this study investigates the reliability of the KF approximation for maximum likelihood (ML) and Bayesian estimations. To measure the approximation error, we compare the outcomes of the KF method with those of the auxiliary particle filter (APF). The APF is a numerical method that requires a longer computing time, but its numerical error can be sufficiently minimized by increasing simulation size. According to our extensive simulation and empirical studies, the likelihood values obtained from the KF approximation are practically identical to those of the APF. Furthermore, we show that the KF method is reliable, particularly when regimes are persistent and sample size is small. From the Bayesian perspective, we show that the KF method improves the efficiency of posterior simulation. This study contributes to the literature by providing evidence to justify the use of the KF method in both ML and Bayesian estimations.  相似文献   

12.
Non-parametric Bayesian Estimation of a Spatial Poisson Intensity   总被引:5,自引:0,他引:5  
A method introduced by Arjas & Gasbarra (1994) and later modified by Arjas & Heikkinen (1997) for the non-parametric Bayesian estimation of an intensity on the real line is generalized to cover spatial processes. The method is based on a model approximation where the approximating intensities have the structure of a piecewise constant function. Random step functions on the plane are generated using Voronoi tessellations of random point patterns. Smoothing between nearby intensity values is applied by means of a Markov random field prior in the spirit of Bayesian image analysis. The performance of the method is illustrated in examples with both real and simulated data.  相似文献   

13.
Bayesian quantile regression for single-index models   总被引:2,自引:0,他引:2  
Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametric link function and a Laplace distribution on the index vector, with the latter motivated by the recent popularity of the Bayesian lasso idea. We design a Markov chain Monte Carlo algorithm for posterior inference. Careful consideration of the singularity of the kernel matrix, and tractability of some of the full conditional distributions leads to a partially collapsed approach where the nonparametric link function is integrated out in some of the sampling steps. Our simulations demonstrate the superior performance of the Bayesian method versus the frequentist approach. The method is further illustrated by an application to the hurricane data.  相似文献   

14.
In this article, a new parameter estimation method, named E-Bayesian method, is considered to obtain the estimates of the unknown parameter and reliability function based on record values. The maximum likelihood, Bayesian, E-Bayesian, and hierarchical Bayesian estimates of the unknown parameter and reliability function are obtained when the underlying distribution belongs to the proportional hazard rate model. The Bayesian estimates are obtained based on squared error and linear-exponential loss functions. The previously obtained some relations for the E-Bayesian estimates are improved. The relationship between E-Bayesian and hierarchical Bayesian estimations are obtained under the same loss functions. The comparison of the derived estimates are carried out by using Monte Carlo simulations. Real data are analyzed for an illustration of the findings.  相似文献   

15.
More recently a large amount of interest has been devoted to the use of Bayesian methods for deriving parameter estimates of the stochastic frontier analysis. Bayesian stochastic frontier analysis (BSFA) seems to be a useful method to assess the efficiency in energy sector. However, BSFA results do not expose the multiple relationships between input and output variables and energy efficiency. This study proposes a framework to make inferences about BSFA efficiencies, recognizing the underlying relationships between variables and efficiency, using Bayesian network (BN) approach. BN classifiers are proposed as a method to analyze the results obtained from BSFA.  相似文献   

16.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

17.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

18.
Abstract

In this article, Bayesian inference for the Offered Optical Network Unit Load (OOL) using non-informative, gamma, power function, and gamma-power function priors is considered. Pareto distributed ON-and OFF-periods generated by the ON/OFF sources at an Optical Network Unit (ONU) in an Ethernet Passive Optical Network (EPON) system are assumed for our implementation in this article. A simulation study and a real-data-based illustrative example are given to demonstrate the advantages of the proposed Bayesian method over the large-sample method.  相似文献   

19.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

20.
We consider a hypothesis problem with directional alternatives. We approach the problem from a Bayesian decision theoretic point of view and consider a situation when one side of the alternatives is more important or more probable than the other. We develop a general Bayesian framework by specifying a mixture prior structure and a loss function related to the Kullback–Leibler divergence. This Bayesian decision method is applied to Normal and Poisson populations. Simulations are performed to compare the performance of the proposed method with that of a method based on a classical z-test and a Bayesian method based on the “0–1” loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号