首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the modelling and fitting of Gaussian Markov random field spatial components within a Generalized AdditiveModel for Location, Scale and Shape (GAMLSS) model. This allows modelling of any or all the parameters of the distribution for the response variable using explanatory variables and spatial effects. The response variable distribution is allowed to be a non-exponential family distribution. A new package developed in R to achieve this is presented. We use Gaussian Markov random fields to model the spatial effect in Munich rent data and explore some features and characteristics of the data. The potential of using spatial analysis within GAMLSS is discussed. We argue that the flexibility of parametric distributions, ability to model all the parameters of the distribution and diagnostic tools of GAMLSS provide an ideal environment for modelling spatial features of data.  相似文献   

2.
In this work, we propose a new model called generalized symmetrical partial linear model, based on the theory of generalized linear models and symmetrical distributions. In our model the response variable follows a symmetrical distribution such a normal, Student-t, power exponential, among others. Following the context of generalized linear models we consider replacing the traditional linear predictors by the more general predictors in whose case one covariate is related with the response variable in a non-parametric fashion, that we do not specified the parametric function. As an example, we could imagine a regression model in which the intercept term is believed to vary in time or geographical location. The backfitting algorithm is used for estimating the parameters of the proposed model. We perform a simulation study for assessing the behavior of the penalized maximum likelihood estimators. We use the quantile residuals for checking the assumption of the model. Finally, we analyzed real data set related with pH rivers in Ireland.  相似文献   

3.
ABSTRACT

We propose a new semiparametric Weibull cure rate model for fitting nonlinear effects of explanatory variables on the mean, scale and cure rate parameters. The regression model is based on the generalized additive models for location, scale and shape, for which any or all distribution parameters can be modeled as parametric linear and/or nonparametric smooth functions of explanatory variables. We present methods to select additive terms, model estimation and validation, where all computational codes are presented in a simple way such that any R user can fit the new model. Biases of the parameter estimates caused by models specified erroneously are investigated through Monte Carlo simulations. We illustrate the usefulness of the new model by means of two applications to real data. We provide computational codes to fit the new regression model in the R software.  相似文献   

4.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies.  相似文献   

5.
We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation. We further illustrate the approach using two real data applications, modelling (i) how sales data depend on advertising spending and (ii) how energy price in Spain depends on the Euro/Dollar exchange rate.  相似文献   

6.
Variable selection is an important issue in all regression analysis, and in this article, we investigate the simultaneous variable selection in joint location and scale models of the skew-t-normal distribution when the dataset under consideration involves heavy tail and asymmetric outcomes. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. These estimators are compared by simulation studies.  相似文献   

7.
We present a new algorithm for boosting generalized additive models for location, scale and shape (GAMLSS) that allows to incorporate stability selection, an increasingly popular way to obtain stable sets of covariates while controlling the per-family error rate. The model is fitted repeatedly to subsampled data, and variables with high selection frequencies are extracted. To apply stability selection to boosted GAMLSS, we develop a new “noncyclical” fitting algorithm that incorporates an additional selection step of the best-fitting distribution parameter in each iteration. This new algorithm has the additional advantage that optimizing the tuning parameters of boosting is reduced from a multi-dimensional to a one-dimensional problem with vastly decreased complexity. The performance of the novel algorithm is evaluated in an extensive simulation study. We apply this new algorithm to a study to estimate abundance of common eider in Massachusetts, USA, featuring excess zeros, overdispersion, nonlinearity and spatiotemporal structures. Eider abundance is estimated via boosted GAMLSS, allowing both mean and overdispersion to be regressed on covariates. Stability selection is used to obtain a sparse set of stable predictors.  相似文献   

8.
Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second-order least squares estimator and a simulation-based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model.  相似文献   

9.
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The performance of a newly proposed imputation method based on generalized additive models for location, scale, and shape (GAMLSS) is investigated. Although imputation methods based on predictive mean matching are virtually unbiased, they suffer from mild to moderate under-coverage, even in the experiment where all variables are jointly normal distributed. The GAMLSS method features better coverage than currently available methods.  相似文献   

10.
Multi-state Models in Epidemiology   总被引:1,自引:0,他引:1  
I first discuss the main assumptions which can be made for multi-state models: the time-homogeneity and semi-Markov assumptions, the problem of choice of the time scale, the assumption of homogeneity of the population and also assumptions about the way the observations are incomplete, leading to truncation and censoring. The influence of covariates and different durations and time-dependent variables are synthesized using explanatory processes, and a general additive model for transition intensities presented. Different inference approaches, including penalized likelihood, are considered. Finally three examples of application in epidemiology are presented and some references to other works are given.  相似文献   

11.
The beta regression models are commonly used by practitioners to model variables that assume values in the standard unit interval (0, 1). In this paper, we consider the issue of variable selection for beta regression models with varying dispersion (VBRM), in which both the mean and the dispersion depend upon predictor variables. Based on a penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. Following the coordinate descent algorithm idea of generalized linear models, we develop new variable selection procedure for the VBRM, which can efficiently simultaneously estimate and select important variables in both mean model and dispersion model. Simulation studies and body fat data analysis are presented to illustrate the proposed methods.  相似文献   

12.
This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required.Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996).Several examples are given, of normal and Bernoulli response variables.  相似文献   

13.
ABSTRACT

Ridge penalized least-squares estimators has been suggested as an alternative to the minimum penalized sum of squares estimates in the presence of collinearity among the explanatory variables in semiparametric regression models (SPRMs). This paper studies the local influence of minor perturbations on the ridge estimates in the SPRM. The diagnostics under the perturbation of ridge penalized sum of squares, response variable, explanatory variables and ridge parameter are considered. Some local influence diagnostics are given. A Monte Carlo simulation study and a real example are used to illustrate the proposed perturbations.  相似文献   

14.
Two different forms of Akaike's information criterion (AIC) are compared for selecting the smooth terms in penalized spline additive mixed models. The conditional AIC (cAIC) has been used traditionally as a criterion for both estimating penalty parameters and selecting covariates in smoothing, and is based on the conditional likelihood given the smooth mean and on the effective degrees of freedom for a model fit. By comparison, the marginal AIC (mAIC) is based on the marginal likelihood from the mixed‐model formulation of penalized splines which has recently become popular for estimating smoothing parameters. To the best of the authors' knowledge, the use of mAIC for selecting covariates for smoothing in additive models is new. In the competing models considered for selection, covariates may have a nonlinear effect on the response, with the possibility of group‐specific curves. Simulations are used to compare the performance of cAIC and mAIC in model selection settings that have correlated and hierarchical smooth terms. In moderately large samples, both formulations of AIC perform extremely well at detecting the function that generated the data. The mAIC does better for simple functions, whereas the cAIC is more sensitive to detecting a true model that has complex and hierarchical terms.  相似文献   

15.
In this paper, we propose a new semiparametric heteroscedastic regression model allowing for positive and negative skewness and bimodal shapes using the B-spline basis for nonlinear effects. The proposed distribution is based on the generalized additive models for location, scale and shape framework in order to model any or all parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. We motivate the new model by means of Monte Carlo simulations, thus ignoring the skewness and bimodality of the random errors in semiparametric regression models, which may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. An iterative estimation process and some diagnostic methods are investigated. Applications to two real data sets are presented and the method is compared to the usual regression methods.  相似文献   

16.
Given data sampled from a number of variables, one is often interested in the underlying causal relationships in the form of a directed acyclic graph. In the general case, without interventions on some of the variables it is only possible to identify the graph up to its Markov equivalence class. However, in some situations one can find the true causal graph just from observational data, for example, in structural equation models with additive noise and nonlinear edge functions. Most current methods for achieving this rely on nonparametric independence tests. One of the problems there is that the null hypothesis is independence, which is what one would like to get evidence for. We take a different approach in our work by using a penalized likelihood as a score for model selection. This is practically feasible in many settings and has the advantage of yielding a natural ranking of the candidate models. When making smoothness assumptions on the probability density space, we prove consistency of the penalized maximum likelihood estimator. We also present empirical results for simulated scenarios and real two-dimensional data sets (cause–effect pairs) where we obtain similar results as other state-of-the-art methods.  相似文献   

17.
This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.  相似文献   

18.
The negative binomial (NB) is frequently used to model overdispersed Poisson count data. To study the effect of a continuous covariate of interest in an NB model, a flexible procedure is used to model the covariate effect by fixed-knot cubic basis-splines or B-splines with a second-order difference penalty on the adjacent B-spline coefficients to avoid undersmoothing. A penalized likelihood is used to estimate parameters of the model. A penalized likelihood ratio test statistic is constructed for the null hypothesis of the linearity of the continuous covariate effect. When the number of knots is fixed, its limiting null distribution is the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. The smoothing parameter value is determined by setting a specified value equal to the asymptotic expectation of the test statistic under the null hypothesis. The power performance of the proposed test is studied with simulation experiments.  相似文献   

19.
Currently, extreme large-scale genetic data present significant challenges for cluster analysis. Most of the existing clustering methods are typically built on the Euclidean distance and geared toward analyzing continuous response. They work well for clustering, e.g. microarray gene expression data, but often perform poorly for clustering, e.g. large-scale single nucleotide polymorphism (SNP) data. In this paper, we study the penalized latent class model for clustering extremely large-scale discrete data. The penalized latent class model takes into account the discrete nature of the response using appropriate generalized linear models and adopts the lasso penalized likelihood approach for simultaneous model estimation and selection of important covariates. We develop very efficient numerical algorithms for model estimation based on the iterative coordinate descent approach and further develop the expectation–maximization algorithm to incorporate and model missing values. We use simulation studies and applications to the international HapMap SNP data to illustrate the competitive performance of the penalized latent class model.  相似文献   

20.
This paper is concerned with selection of explanatory variables in generalized linear models (GLM). The class of GLM's is quite large and contains e.g. the ordinary linear regression, the binary logistic regression, the probit model and Poisson regression with linear or log-linear parameter structure. We show that, through an approximation of the log likelihood and a certain data transformation, the variable selection problem in a GLM can be converted into variable selection in an ordinary (unweighted) linear regression model. As a consequence no specific computer software for variable selection in GLM's is needed. Instead, some suitable variable selection program for linear regression can be used. We also present a simulation study which shows that the log likelihood approximation is very good in many practical situations. Finally, we mention briefly possible extensions to regression models outside the class of GLM's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号