首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The estimation of the covariance matrix is important in the analysis of bivariate longitudinal data. A good estimator for the covariance matrix can improve the efficiency of the estimators of the mean regression coefficients. Furthermore, the covariance estimation itself is also of interest, but it is a challenging job to model the covariance matrix of bivariate longitudinal data due to the complex structure and positive definite constraint. In addition, most of existing approaches are based on the maximum likelihood, which is very sensitive to outliers or heavy-tail error distributions. In this article, an adaptive robust estimation method is proposed for bivariate longitudinal data. Unlike the existing likelihood-based methods, the proposed method can adapt to different error distributions. Specifically, at first, we utilize the modified Cholesky block decomposition to parameterize the covariance matrices. Secondly, we apply the bounded Huber's score function to develop a set of robust generalized estimating equations to estimate the parameters both in the mean and the covariance models simultaneously. A data-driven approach is presented to select the parameter c in the Huber's score function, which can ensure that the proposed method is robust and efficient. A simulation study and a real data analysis are conducted to illustrate the robustness and efficiency of the proposed approach.  相似文献   

2.
Multivariate Poisson regression with covariance structure   总被引:1,自引:0,他引:1  
In recent years the applications of multivariate Poisson models have increased, mainly because of the gradual increase in computer performance. The multivariate Poisson model used in practice is based on a common covariance term for all the pairs of variables. This is rather restrictive and does not allow for modelling the covariance structure of the data in a flexible way. In this paper we propose inference for a multivariate Poisson model with larger structure, i.e. different covariance for each pair of variables. Maximum likelihood estimation, as well as Bayesian estimation methods are proposed. Both are based on a data augmentation scheme that reflects the multivariate reduction derivation of the joint probability function. In order to enlarge the applicability of the model we allow for covariates in the specification of both the mean and the covariance parameters. Extension to models with complete structure with many multi-way covariance terms is discussed. The method is demonstrated by analyzing a real life data set.  相似文献   

3.
For longitudinal data, the within-subject dependence structure and covariance parameters may be of practical and theoretical interests. The estimation of covariance parameters has received much attention and been studied mainly in the framework of generalized estimating equations (GEEs). The GEEs method, however, is sensitive to outliers. In this paper, an alternative set of robust generalized estimating equations for both the mean and covariance parameters are proposed in the partial linear model for longitudinal data. The asymptotic properties of the proposed estimators of regression parameters, non-parametric function and covariance parameters are obtained. Simulation studies are conducted to evaluate the performance of the proposed estimators under different contaminations. The proposed method is illustrated with a real data analysis.  相似文献   

4.
In this article, we consider a robust method of estimating a realized covariance matrix calculated as the sum of cross products of intraday high-frequency returns. According to recent articles in financial econometrics, the realized covariance matrix is essentially contaminated with market microstructure noise. Although techniques for removing noise from the matrix have been studied since the early 2000s, they have primarily investigated a low-dimensional covariance matrix with statistically significant sample sizes. We focus on noise-robust covariance estimation under converse circumstances, that is, a high-dimensional covariance matrix possibly with a small sample size. For the estimation, we utilize a statistical hypothesis test based on the characteristic that the largest eigenvalue of the covariance matrix asymptotically follows a Tracy–Widom distribution. The null hypothesis assumes that log returns are not pure noises. If a sample eigenvalue is larger than the relevant critical value, then we fail to reject the null hypothesis. The simulation results show that the estimator studied here performs better than others as measured by mean squared error. The empirical analysis shows that our proposed estimator can be adopted to forecast future covariance matrices using real data.  相似文献   

5.
In this paper, a new method for robust principal component analysis (PCA) is proposed. PCA is a widely used tool for dimension reduction without substantial loss of information. However, the classical PCA is vulnerable to outliers due to its dependence on the empirical covariance matrix. To avoid such weakness, several alternative approaches based on robust scatter matrix were suggested. A popular choice is ROBPCA that combines projection pursuit ideas with robust covariance estimation via variance maximization criterion. Our approach is based on the fact that PCA can be formulated as a regression-type optimization problem, which is the main difference from the previous approaches. The proposed robust PCA is derived by substituting square loss function with a robust penalty function, Huber loss function. A practical algorithm is proposed in order to implement an optimization computation, and furthermore, convergence properties of the algorithm are investigated. Results from a simulation study and a real data example demonstrate the promising empirical properties of the proposed method.  相似文献   

6.
宋鹏等 《统计研究》2020,37(7):116-128
高维协方差矩阵的估计问题现已成为大数据统计分析中的基本问题,传统方法要求数据满足正态分布假定且未考虑异常值影响,当前已无法满足应用需要,更加稳健的估计方法亟待被提出。针对高维协方差矩阵,一种稳健的基于子样本分组的均值-中位数估计方法被提出且简单易行,然而此方法估计的矩阵并不具备正定稀疏特性。基于此问题,本文引进一种中心正则化算法,弥补了原始方法的缺陷,通过在求解过程中对估计矩阵的非对角元素施加L1范数惩罚,使估计的矩阵具备正定稀疏的特性,显著提高了其应用价值。在数值模拟中,本文所提出的中心正则稳健估计有着更高的估计精度,同时更加贴近真实设定矩阵的稀疏结构。在后续的投资组合实证分析中,与传统样本协方差矩阵估计方法、均值-中位数估计方法和RA-LASSO方法相比,基于中心正则稳健估计构造的最小方差投资组合收益率有着更低的波动表现。  相似文献   

7.
In longitudinal data analysis, efficient estimation of regression coefficients requires a correct specification of certain covariance structure, and efficient estimation of covariance matrix requires a correct specification of mean regression model. In this article, we propose a general semiparametric model for the mean and the covariance simultaneously using the modified Cholesky decomposition. A regression spline-based approach within the framework of generalized estimating equations is proposed to estimate the parameters in the mean and the covariance. Under regularity conditions, asymptotic properties of the resulting estimators are established. Extensive simulation is conducted to investigate the performance of the proposed estimator and in the end a real data set is analysed using the proposed approach.  相似文献   

8.
This paper discusses the estimation of regression parameters after summarizing the data by a covariance matrix of the concatenated vector of explanatory variables and response variable. A robust estimate of the covariance matrix leads to a robust regression estimator. An M-estimator at the covariance estimation step is studied in the paper, and the resulting regression estimator is compared to a few previously proposed robust regression estimators.  相似文献   

9.
In practical survey sampling, missing data are unavoidable due to nonresponse, rejected observations by editing, disclosure control, or outlier suppression. We propose a calibrated imputation approach so that valid point and variance estimates of the population (or domain) totals can be computed by the secondary users using simple complete‐sample formulae. This is especially helpful for variance estimation, which generally require additional information and tools that are unavailable to the secondary users. Our approach is natural for continuous variables, where the estimation may be either based on reweighting or imputation, including possibly their outlier‐robust extensions. We also propose a multivariate procedure to accommodate the estimation of the covariance matrix between estimated population totals, which facilitates variance estimation of the ratios or differences among the estimated totals. We illustrate the proposed approach using simulation data in supplementary materials that are available online.  相似文献   

10.
In this article, we consider a semivarying coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to semivarying coefficient longitudinal data model, and prove a nonparametric version of Wilks' theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.  相似文献   

11.
We propose an estimation method that incorporates the correlation/covariance structure between repeated measurements in covariate-adjusted regression models for distorted longitudinal data. In this distorted data setting, neither the longitudinal response nor (possibly time-varying) predictors are directly observable. The unobserved response and predictors are assumed to be distorted/contaminated by unknown functions of a common observable confounder. The proposed estimation methodology adjusts for the distortion effects both in estimation of the covariance structure and in the regression parameters using generalized least squares. The finite-sample performance of the proposed estimators is studied numerically by means of simulations. The consistency and convergence rates of the proposed estimators are also established. The proposed method is illustrated with an application to data from a longitudinal study of cognitive and social development in children.  相似文献   

12.
Fisher consistent and Fréchet differentiable statistical functionals have been already used by Bednarski and Zontek [Robust estimation of parameters in a mixed unbalanced model. Ann Statist. 1996;24(4):1493–1510] to get a robust estimator of parameters in a two-way crossed classification mixed model. This way of robust estimation appears also in the variance components model with a commutative covariance matrix [Zmy?lony, Zontek. Robust M-estimator of parameters in variance components model. Discuss Math Probab Stat. 2002;22:61–71]. In this paper it is shown that a modification of this method does not involve any assumptions about commutation of covariance matrix. The theoretical results have been completed with computer simulation studies. Robustness of considered estimator and possibility of approximation of the estimator's distribution with some multivariate normal distribution for both model and contaminated data have been confirmed there.  相似文献   

13.
Fuzzy least-square regression can be very sensitive to unusual data (e.g., outliers). In this article, we describe how to fit an alternative robust-regression estimator in fuzzy environment, which attempts to identify and ignore unusual data. The proposed approach concerns classical robust regression and estimation methods that are insensitive to outliers. In this regard, based on the least trimmed square estimation method, an estimation procedure is proposed for determining the coefficients of the fuzzy regression model for crisp input-fuzzy output data. The investigated fuzzy regression model is applied to bedload transport data forecasting suspended load by discharge based on a real world data. The accuracy of the proposed method is compared with the well-known fuzzy least-square regression model. The comparison results reveal that the fuzzy robust regression model performs better than the other models in suspended load estimation for the particular dataset. This comparison is done based on a similarity measure between fuzzy sets. The proposed model is general and can be used for modeling natural phenomena whose available observations are reported as imprecise rather than crisp.  相似文献   

14.
A criterion for robust estimation of location and covariance matrix is considered, and its application in outlier labeling is discussed. This method, unlike the methods based on MVE and MCD, is applicable to large and high-dimension data sets. The method proposed here is also robust and has the same breakdown point as the MVE- and MCD-based methods. Furthermore, the computational complexity of the proposed method is significantly smaller than that of other methods.  相似文献   

15.
In this paper, we propose a novel robust principal component analysis (PCA) for high-dimensional data in the presence of various heterogeneities, in particular strong tailing and outliers. A transformation motivated by the characteristic function is constructed to improve the robustness of the classical PCA. The suggested method has the distinct advantage of dealing with heavy-tail-distributed data, whose covariances may be non-existent (positively infinite, for instance), in addition to the usual outliers. The proposed approach is also a case of kernel principal component analysis (KPCA) and employs the robust and non-linear properties via a bounded and non-linear kernel function. The merits of the new method are illustrated by some statistical properties, including the upper bound of the excess error and the behaviour of the large eigenvalues under a spiked covariance model. Additionally, using a variety of simulations, we demonstrate the benefits of our approach over the classical PCA. Finally, using data on protein expression in mice of various genotypes in a biological study, we apply the novel robust PCA to categorise the mice and find that our approach is more effective at identifying abnormal mice than the classical PCA.  相似文献   

16.
Stochastic gradient descent (SGD) provides a scalable way to compute parameter estimates in applications involving large‐scale data or streaming data. As an alternative version, averaged implicit SGD (AI‐SGD) has been shown to be more stable and more efficient. Although the asymptotic properties of AI‐SGD have been well established, statistical inferences based on it such as interval estimation remain unexplored. The bootstrap method is not computationally feasible because it requires to repeatedly resample from the entire data set. In addition, the plug‐in method is not applicable when there is no explicit covariance matrix formula. In this paper, we propose a scalable statistical inference procedure, which can be used for conducting inferences based on the AI‐SGD estimator. The proposed procedure updates the AI‐SGD estimate as well as many randomly perturbed AI‐SGD estimates, upon the arrival of each observation. We derive some large‐sample theoretical properties of the proposed procedure and examine its performance via simulation studies.  相似文献   

17.
A nonconcave penalized estimation method is proposed for partially linear models with longitudinal data when the number of parameters diverges with the sample size. The proposed procedure can simultaneously estimate the parameters and select the important variables. Under some regularity conditions, the rate of convergence and asymptotic normality of the resulting estimators are established. In addition, an iterative algorithm is proposed to implement the proposed estimators. To improve efficiency for regression coefficients, the estimation of the covariance function is integrated in the iterative algorithm. Simulation studies are carried out to demonstrate that the proposed method performs well, and a real data example is analysed to illustrate the proposed procedure.  相似文献   

18.
In this article, we explore hypothesis testing problems related to correlated proportions from clustered matched-pair binary data. Null hypotheses of equality in proportions, homogeneity, and non-inferiority of one to another are similar testing problems of linear contrasts of correlated proportions with suitable transformation. The covariance estimators of the test statistics are based on moment estimation under the null hypotheses. We present a general framework for testing linear contrasts of the correlated proportions from clustered matched-pair data based upon a class of unbiased estimators of the proportions. The corresponding testing procedures do not impose structure assumptions on the correlation matrix and are easy to use. Simulation results suggest that the proposed method is more likely to maintain the proper significance level and to improve power than the test proposed by Obuchowski.  相似文献   

19.
Negative binomial regression is a standard model to analyze hypoglycemic events in diabetes clinical trials. Adjusting for baseline covariates could potentially increase the estimation efficiency of negative binomial regression. However, adjusting for covariates raises concerns about model misspecification, in which the negative binomial regression is not robust because of its requirement for strong model assumptions. In some literature, it was suggested to correct the standard error of the maximum likelihood estimator through introducing overdispersion, which can be estimated by the Deviance or Pearson Chi‐square. We proposed to conduct the negative binomial regression using Sandwich estimation to calculate the covariance matrix of the parameter estimates together with Pearson overdispersion correction (denoted by NBSP). In this research, we compared several commonly used negative binomial model options with our proposed NBSP. Simulations and real data analyses showed that NBSP is the most robust to model misspecification, and the estimation efficiency will be improved by adjusting for baseline hypoglycemia. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The paper considers the goodness of fit tests with right censored data or doubly censored data. The Fredholm Integral Equation (FIE) method proposed by Ren (1993) is implemented in the simulation studies to estimate the null distribution of the Cramér-von Mises test statistics and the asymptotic covariance function of the self-consistent estimator for the lifetime distribution with right censored data or doubly censored data. We show that for fixed alternatives, the bootstrap method does not estimate the null distribution consistently for doubly censored data. For the right censored case, a comparison between the performance of FIE and the η out of η bootstrap shows that FIE gives better estimation for the null distribution. The application of FIE to a set of right censored Channing House data and to a set of doubly censored breast cancer data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号