首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

2.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

3.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

4.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

5.
Suppose a subset of populations is selected from k exponential populations with unknown location parameters θ1, θ2, …, θk and common known scale parameter σ. We consider the estimation of the location parameter of the selected population and the average worth of the selected subset under an asymmetric LINEX loss function. We show that the natural estimator of these parameters is biased and find the uniformly minimum risk-unbiased (UMRU) estimator of these parameters. In the case of k = 2, we find the minimax estimator of the location parameter of the smallest selected population. Furthermore, we compare numerically the risk of UMRU, minimax, and the natural estimators.  相似文献   

6.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

7.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

8.
9.
We consider the situation where one wants to maximise a functionf(θ,x) with respect tox, with θ unknown and estimated from observationsy k . This may correspond to the case of a regression model, where one observesy k =f(θ,x k )+ε k , with ε k some random error, or to the Bernoulli case wherey k ∈{0, 1}, with Pr[y k =1|θ,x k |=f(θ,x k ). Special attention is given to sequences given by , with an estimated value of θ obtained from (x1, y1),...,(x k ,y k ) andd k (x) a penalty for poor estimation. Approximately optimal rules are suggested in the linear regression case with a finite horizon, where one wants to maximize ∑ i=1 N w i f(θ, x i ) with {w i } a weighting sequence. Various examples are presented, with a comparison with a Polya urn design and an up-and-down method for a binary response problem.  相似文献   

10.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

11.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

12.
13.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

14.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

15.
For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form Lr, w, d0(q, d)=wr(d0, d)+ (1-w) r(q, d){L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}, as well as the weighted version q(q) Lr, w, d0(q, d){q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}, where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of q, w ? [0,1){\theta, \omega \in[0,1)}, and q(·) is a positive weight function. we develop Bayesian estimators under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω > 0 by relating such estimators to Bayesian solutions under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.  相似文献   

16.
The problem of estimating ordered parameters is encountered in biological, agricultural, reliability and various other experiments. Consider two populations with densities f1(x11) and f2(x22) where ω12. The estimation of ω12) with the loss function, the sum of squared errors, is studied. when fi is the fi(,i,,i 2) density with ,i known, i=1,2; we obtain a class of minimax estimators. When ω12 we show some of these estimators are improved by the maximum likelihood estimator. For a general fi we give sufficient conditions for the minimaxity of the analogue of the Pitman estimator.  相似文献   

17.
For two independent populations X and Y we develop the empirical distribution function estimator for the difference of order statistics of the form X (i)Y (j). The key practical application for this estimator pertains to inference between quantiles from two independent populations.  相似文献   

18.
Let Y1,…,Y n, (Y1 <Y2<…<Y n) be the order statistics of a random sample from a distribution F with density f on the realline. This paper gives a class of estimators of the derivativef'(x) of the density f at points x for which f has

a continuoussecond derivative. These estimators are based on spacings inthe order statistics Yj+kn -y j j = 1,…,n-kn,kn<n.  相似文献   

19.
Suppose that a finite population consists of N distinct units. Associated with the ith unit is a polychotomous response vector, d i , and a vector of auxiliary variable x i . The values x i ’s are known for the entire population but d i ’s are known only for the units selected in the sample. The problem is to estimate the finite population proportion vector P. One of the fundamental questions in finite population sampling is how to make use of the complete auxiliary information effectively at the estimation stage. In this article a predictive estimator is proposed which incorporates the auxiliary information at the estimation stage by invoking a superpopulation model. However, the use of such estimators is often criticized since the working superpopulation model may not be correct. To protect the predictive estimator from the possible model failure, a nonparametric regression model is considered in the superpopulation. The asymptotic properties of the proposed estimator are derived and also a bootstrap-based hybrid re-sampling method for estimating the variance of the proposed estimator is developed. Results of a simulation study are reported on the performances of the predictive estimator and its re-sampling-based variance estimator from the model-based viewpoint. Finally, a data survey related to the opinions of 686 individuals on the cause of addiction is used for an empirical study to investigate the performance of the nonparametric predictive estimator from the design-based viewpoint.  相似文献   

20.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号