首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
In this paper, a simulation study is conducted to systematically investigate the impact of different types of missing data on six different statistical analyses: four different likelihood‐based linear mixed effects models and analysis of covariance (ANCOVA) using two different data sets, in non‐inferiority trial settings for the analysis of longitudinal continuous data. ANCOVA is valid when the missing data are completely at random. Likelihood‐based linear mixed effects model approaches are valid when the missing data are at random. Pattern‐mixture model (PMM) was developed to incorporate non‐random missing mechanism. Our simulations suggest that two linear mixed effects models using unstructured covariance matrix for within‐subject correlation with no random effects or first‐order autoregressive covariance matrix for within‐subject correlation with random coefficient effects provide well control of type 1 error (T1E) rate when the missing data are completely at random or at random. ANCOVA using last observation carried forward imputed data set is the worst method in terms of bias and T1E rate. PMM does not show much improvement on controlling T1E rate compared with other linear mixed effects models when the missing data are not at random but is markedly inferior when the missing data are at random. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In clinical practice, the profile of each subject's CD4 response from a longitudinal study may follow a ‘broken stick’ like trajectory, indicating multiple phases of increase and/or decline in response. Such multiple phases (changepoints) may be important indicators to help quantify treatment effect and improve management of patient care. Although it is a common practice to analyze complex AIDS longitudinal data using nonlinear mixed-effects (NLME) or nonparametric mixed-effects (NPME) models in the literature, NLME or NPME models become a challenge to estimate changepoint due to complicated structures of model formulations. In this paper, we propose a changepoint mixed-effects model with random subject-specific parameters, including the changepoint for the analysis of longitudinal CD4 cell counts for HIV infected subjects following highly active antiretroviral treatment. The longitudinal CD4 data in this study may exhibit departures from symmetry, may encounter missing observations due to various reasons, which are likely to be non-ignorable in the sense that missingness may be related to the missing values, and may be censored at the time of the subject going off study-treatment, which is a potentially informative dropout mechanism. Inferential procedures can be complicated dramatically when longitudinal CD4 data with asymmetry (skewness), incompleteness and informative dropout are observed in conjunction with an unknown changepoint. Our objective is to address the simultaneous impact of skewness, missingness and informative censoring by jointly modeling the CD4 response and dropout time processes under a Bayesian framework. The method is illustrated using a real AIDS data set to compare potential models with various scenarios, and some interested results are presented.  相似文献   

3.
The use of mixed effects models for repeated measures (MMRM) for clinical trial analyses has recently gained broad support as a primary analysis methodology. Some questions of practical implementation detail remain, however. For example, whether and how to incorporate clinical trial data that is collected at nonprotocol‐specified timepoints or clinic visits has not been systematically studied. In this paper, we compare different methods for applying MMRM to trials wherein data is available at protocol‐specified timepoints, as well as nonprotocol‐specified timepoints due to patient early discontinuation. The methods under consideration included observed case MMRM, per protocol visits MMRM, interval last observation carried forward (LOCF) MMRM, and a hybrid of the per protocol visits and interval LOCF MMRM approaches. Simulation results reveal that the method that best controls the type I error rate is the per protocol visits method. This method is also associated with the least precision among the competing methods. Thus, in confirmatory clinical trials wherein control of type I error rates is critical, per protocol visits MMRM is recommended. However, in exploratory trials where strict type I error control is not as critical, one may prefer interval LOCF MMRM due to its increased precision. Points to consider with respect to both study design (e.g., assigning schedule of events) and subsequent analysis are offered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The last observation carried forward (LOCF) approach is commonly utilized to handle missing values in the primary analysis of clinical trials. However, recent evidence suggests that likelihood‐based analyses developed under the missing at random (MAR) framework are sensible alternatives. The objective of this study was to assess the Type I error rates from a likelihood‐based MAR approach – mixed‐model repeated measures (MMRM) – compared with LOCF when estimating treatment contrasts for mean change from baseline to endpoint (Δ). Data emulating neuropsychiatric clinical trials were simulated in a 4 × 4 factorial arrangement of scenarios, using four patterns of mean changes over time and four strategies for deleting data to generate subject dropout via an MAR mechanism. In data with no dropout, estimates of Δ and SEΔ from MMRM and LOCF were identical. In data with dropout, the Type I error rates (averaged across all scenarios) for MMRM and LOCF were 5.49% and 16.76%, respectively. In 11 of the 16 scenarios, the Type I error rate from MMRM was at least 1.00% closer to the expected rate of 5.00% than the corresponding rate from LOCF. In no scenario did LOCF yield a Type I error rate that was at least 1.00% closer to the expected rate than the corresponding rate from MMRM. The average estimate of SEΔ from MMRM was greater in data with dropout than in complete data, whereas the average estimate of SEΔ from LOCF was smaller in data with dropout than in complete data, suggesting that standard errors from MMRM better reflected the uncertainty in the data. The results from this investigation support those from previous studies, which found that MMRM provided reasonable control of Type I error even in the presence of MNAR missingness. No universally best approach to analysis of longitudinal data exists. However, likelihood‐based MAR approaches have been shown to perform well in a variety of situations and are a sensible alternative to the LOCF approach. MNAR methods can be used within a sensitivity analysis framework to test the potential presence and impact of MNAR data, thereby assessing robustness of results from an MAR method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding how long-term marital stress affects major depressive disorder (MDD) in older women has clinical implications for the treatment of women at risk. In this paper, we consider the problem of predicting MDD in older women (mean age 60) from a marital stress scale administered four times during the preceding 20-year period, with a greater dropout by women experiencing marital stress or MDD. To analyze these data, we propose a Bayesian joint model consisting of: (1) a linear mixed effects model for the longitudinal measurements, (2) a generalized linear model for the binary primary endpoint, and (3) a shared parameter model for the missing data mechanism. Our analysis indicates that MDD in older women is significantly associated with higher levels of prior marital stress and increasing marital stress over time, although there is a generally decreasing trend in marital stress. This is the first study to propose a joint model for incompletely observed longitudinal measurements, a binary primary endpoint, and non-ignorable missing data; a comparison shows that the joint model yields better predictive accuracy than a two-stage model. These findings suggest that women who experience marital stress in mid-life need treatment to help prevent late-life MDD, which has serious consequences for older persons.  相似文献   

6.
Missing data cause challenging issues, particularly in phase III registration trials, as highlighted by the European Medicines Agency (EMA) and the US National Research Council. We explore, as a case study, how the issues from missing data were tackled in a double‐blind phase III trial in subjects with autosomal dominant polycystic kidney disease. A total of 1445 subjects were randomized in a 2:1 ratio to receive active treatment (tolvaptan), or placebo. The primary outcome, the rate of change in total kidney volume, favored tolvaptan (P < .0001). The key secondary efficacy endpoints of clinical progression of disease and rate of decline in kidney function also favored tolvaptan. However, as highlighted by Food and Drug Administration and EMA, the interpretation of results was hampered by a high number of unevenly distributed dropouts, particularly early dropouts. In this paper, we outline the analyses undertaken to address the issue of missing data thoroughly. “Tipping point analyses” were performed to explore how extreme and detrimental outcomes among subjects with missing data must be to overturn the positive treatment effect attained in those subjects who had complete data. Nonparametric rank‐based analyses were also performed accounting for missing data. In conclusion, straightforward and transparent analyses directly taking into account missing data convincingly support the robustness of the preplanned analyses on the primary and secondary endpoints. Tolvaptan was confirmed to be effective in slowing total kidney volume growth, which is considered an efficacy endpoint by EMA, and in lessening the decline in renal function in patients with autosomal dominant polycystic kidney disease.  相似文献   

7.
A popular choice when analyzing ordinal data is to consider the cumulative proportional odds model to relate the marginal probabilities of the ordinal outcome to a set of covariates. However, application of this model relies on the condition of identical cumulative odds ratios across the cut-offs of the ordinal outcome; the well-known proportional odds assumption. This paper focuses on the assessment of this assumption while accounting for repeated and missing data. In this respect, we develop a statistical method built on multiple imputation (MI) based on generalized estimating equations that allows to test the proportionality assumption under the missing at random setting. The performance of the proposed method is evaluated for two MI algorithms for incomplete longitudinal ordinal data. The impact of both MI methods is compared with respect to the type I error rate and the power for situations covering various numbers of categories of the ordinal outcome, sample sizes, rates of missingness, well-balanced and skewed data. The comparison of both MI methods with the complete-case analysis is also provided. We illustrate the use of the proposed methods on a quality of life data from a cancer clinical trial.  相似文献   

8.
Summary.  In longitudinal studies missing data are the rule not the exception. We consider the analysis of longitudinal binary data with non-monotone missingness that is thought to be non-ignorable. In this setting a full likelihood approach is complicated algebraically and can be computationally prohibitive when there are many measurement occasions. We propose a 'protective' estimator that assumes that the probability that a response is missing at any occasion depends, in a completely unspecified way, on the value of that variable alone. Relying on this 'protectiveness' assumption, we describe a pseudolikelihood estimator of the regression parameters under non-ignorable missingness, without having to model the missing data mechanism directly. The method proposed is applied to CD4 cell count data from two longitudinal clinical trials of patients infected with the human immunodeficiency virus.  相似文献   

9.
In the past, many clinical trials have withdrawn subjects from the study when they prematurely stopped their randomised treatment and have therefore only collected ‘on‐treatment’ data. Thus, analyses addressing a treatment policy estimand have been restricted to imputing missing data under assumptions drawn from these data only. Many confirmatory trials are now continuing to collect data from subjects in a study even after they have prematurely discontinued study treatment as this event is irrelevant for the purposes of a treatment policy estimand. However, despite efforts to keep subjects in a trial, some will still choose to withdraw. Recent publications for sensitivity analyses of recurrent event data have focused on the reference‐based imputation methods commonly applied to continuous outcomes, where imputation for the missing data for one treatment arm is based on the observed outcomes in another arm. However, the existence of data from subjects who have prematurely discontinued treatment but remained in the study has now raised the opportunity to use this ‘off‐treatment’ data to impute the missing data for subjects who withdraw, potentially allowing more plausible assumptions for the missing post‐study‐withdrawal data than reference‐based approaches. In this paper, we introduce a new imputation method for recurrent event data in which the missing post‐study‐withdrawal event rate for a particular subject is assumed to reflect that observed from subjects during the off‐treatment period. The method is illustrated in a trial in chronic obstructive pulmonary disease (COPD) where the primary endpoint was the rate of exacerbations, analysed using a negative binomial model.  相似文献   

10.
Missing data, and the bias they can cause, are an almost ever‐present concern in clinical trials. The last observation carried forward (LOCF) approach has been frequently utilized to handle missing data in clinical trials, and is often specified in conjunction with analysis of variance (LOCF ANOVA) for the primary analysis. Considerable advances in statistical methodology, and in our ability to implement these methods, have been made in recent years. Likelihood‐based, mixed‐effects model approaches implemented under the missing at random (MAR) framework are now easy to implement, and are commonly used to analyse clinical trial data. Furthermore, such approaches are more robust to the biases from missing data, and provide better control of Type I and Type II errors than LOCF ANOVA. Empirical research and analytic proof have demonstrated that the behaviour of LOCF is uncertain, and in many situations it has not been conservative. Using LOCF as a composite measure of safety, tolerability and efficacy can lead to erroneous conclusions regarding the effectiveness of a drug. This approach also violates the fundamental basis of statistics as it involves testing an outcome that is not a physical parameter of the population, but rather a quantity that can be influenced by investigator behaviour, trial design, etc. Practice should shift away from using LOCF ANOVA as the primary analysis and focus on likelihood‐based, mixed‐effects model approaches developed under the MAR framework, with missing not at random methods used to assess robustness of the primary analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Summary.  In longitudinal studies, missingness of data is often an unavoidable problem. Estimators from the linear mixed effects model assume that missing data are missing at random. However, estimators are biased when this assumption is not met. In the paper, theoretical results for the asymptotic bias are established under non-ignorable drop-out, drop-in and other missing data patterns. The asymptotic bias is large when the drop-out subjects have only one or no observation, especially for slope-related parameters of the linear mixed effects model. In the drop-in case, intercept-related parameter estimators show substantial asymptotic bias when subjects enter late in the study. Eight other missing data patterns are considered and these produce asymptotic biases of a variety of magnitudes.  相似文献   

12.
Under an assumption that missing values occur randomly in a matrix, formulae are developed for the expected value and variance of six statistics that summarize the number and location of the missing values. For a seventh statistic, a regression model based on simulated data yields an estimate of the expected value. The results can be used in the development of methods to control the Type I error and approximate power and sample size for multilevel and longitudinal studies with missing data.  相似文献   

13.
Summary.  Non-ignorable missing data, a serious problem in both clinical trials and observational studies, can lead to biased inferences. Quality-of-life measures have become increasingly popular in clinical trials. However, these measures are often incompletely observed, and investigators may suspect that missing quality-of-life data are likely to be non-ignorable. Although several recent references have addressed missing covariates in survival analysis, they all required the assumption that missingness is at random or that all covariates are discrete. We present a method for estimating the parameters in the Cox proportional hazards model when missing covariates may be non-ignorable and continuous or discrete. Our method is useful in reducing the bias and improving efficiency in the presence of missing data. The methodology clearly specifies assumptions about the missing data mechanism and, through sensitivity analysis, helps investigators to understand the potential effect of missing data on study results.  相似文献   

14.
Abstract

Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.  相似文献   

15.
A common occurrence in clinical trials with a survival end point is missing covariate data. With ignorably missing covariate data, Lipsitz and Ibrahim proposed a set of estimating equations to estimate the parameters of Cox's proportional hazards model. They proposed to obtain parameter estimates via a Monte Carlo EM algorithm. We extend those results to non-ignorably missing covariate data. We present a clinical trials example with three partially observed laboratory markers which are used as covariates to predict survival.  相似文献   

16.
This paper compares the performance of weighted generalized estimating equations (WGEEs), multiple imputation based on generalized estimating equations (MI-GEEs) and generalized linear mixed models (GLMMs) for analyzing incomplete longitudinal binary data when the underlying study is subject to dropout. The paper aims to explore the performance of the above methods in terms of handling dropouts that are missing at random (MAR). The methods are compared on simulated data. The longitudinal binary data are generated from a logistic regression model, under different sample sizes. The incomplete data are created for three different dropout rates. The methods are evaluated in terms of bias, precision and mean square error in case where data are subject to MAR dropout. In conclusion, across the simulations performed, the MI-GEE method performed better in both small and large sample sizes. Evidently, this should not be seen as formal and definitive proof, but adds to the body of knowledge about the methods’ relative performance. In addition, the methods are compared using data from a randomized clinical trial.  相似文献   

17.
Nonlinear mixed‐effects (NLME) modeling is one of the most powerful tools for analyzing longitudinal data especially under the sparse sampling design. The determinant of the Fisher information matrix is a commonly used global metric of the information that can be provided by the data under a given model. However, in clinical studies, it is also important to measure how much information the data provide for a certain parameter of interest under the assumed model, for example, the clearance in population pharmacokinetic models. This paper proposes a new, easy‐to‐interpret information metric, the “relative information” (RI), which is designed for specific parameters of a model and takes a value between 0% and 100%. We establish the relationship between interindividual variability for a specific parameter and the variance of the associated parameter estimator, demonstrating that, under a “perfect” experiment (eg, infinite samples or/and minimum experimental error), the RI and the variance of the model parameter estimator converge, respectively, to 100% and the ratio of the interindividual variability for that parameter and the number of subjects. Extensive simulation experiments and analyses of three real datasets show that our proposed RI metric can accurately characterize the information for parameters of interest for NLME models. The new information metric can be readily used to facilitate study designs and model diagnosis.  相似文献   

18.
Missing data in clinical trials is a well‐known problem, and the classical statistical methods used can be overly simple. This case study shows how well‐established missing data theory can be applied to efficacy data collected in a long‐term open‐label trial with a discontinuation rate of almost 50%. Satisfaction with treatment in chronically constipated patients was the efficacy measure assessed at baseline and every 3 months postbaseline. The improvement in treatment satisfaction from baseline was originally analyzed with a paired t‐test ignoring missing data and discarding the correlation structure of the longitudinal data. As the original analysis started from missing completely at random assumptions regarding the missing data process, the satisfaction data were re‐examined, and several missing at random (MAR) and missing not at random (MNAR) techniques resulted in adjusted estimate for the improvement in satisfaction over 12 months. Throughout the different sensitivity analyses, the effect sizes remained significant and clinically relevant. Thus, even for an open‐label trial design, sensitivity analysis, with different assumptions for the nature of dropouts (MAR or MNAR) and with different classes of models (selection, pattern‐mixture, or multiple imputation models), has been found useful and provides evidence towards the robustness of the original analyses; additional sensitivity analyses could be undertaken to further qualify robustness. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We propose a three step procedure to investigate measurement bias and response shift, a special case of measurement bias in longitudinal data. Structural equation modelling is used in each of the three steps, which can be described as (1) establishing a measurement model using confirmatory factor analysis, (2) detecting measurement bias by testing the equivalence of model parameters across measurement occasions, (3) detecting measurement bias with respect to additional exogenous variables by testing their direct effects on the indicator variables. The resulting model can be used to investigate true change in the attributes of interest, by testing changes in common factor means. Solutions for the issue of constraint interaction and for chance capitalisation in model specification searches are discussed as part of the procedure. The procedure is illustrated by applying it to longitudinal health-related quality-of-life data of HIV/AIDS patients, collected at four semi-annual measurement occasions.  相似文献   

20.
This article proposes a Bayesian approach, which can simultaneously obtain the Bayesian estimates of unknown parameters and random effects, to analyze nonlinear reproductive dispersion mixed models (NRDMMs) for longitudinal data with nonignorable missing covariates and responses. The logistic regression model is employed to model the missing data mechanisms for missing covariates and responses. A hybrid sampling procedure combining the Gibber sampler and the Metropolis-Hastings algorithm is presented to draw observations from the conditional distributions. Because missing data mechanism is not testable, we develop the logarithm of the pseudo-marginal likelihood, deviance information criterion, the Bayes factor, and the pseudo-Bayes factor to compare several competing missing data mechanism models in the current considered NRDMMs with nonignorable missing covaraites and responses. Three simulation studies and a real example taken from the paediatric AIDS clinical trial group ACTG are used to illustrate the proposed methodologies. Empirical results show that our proposed methods are effective in selecting missing data mechanism models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号