首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exact mean-squared error (MSE) of estimators of the variance in nonparametric regression based on quadratic forms is investigated. In particular, two classes of estimators are compared: Hall, Kay and Titterington's optimal difference-based estimators and a class of ordinary difference-based estimators which generalize methods proposed by Rice and Gasser, Sroka and Jennen-Steinmetz. For small sample sizes the MSE of the first estimator is essentially increased by the magnitude of the integrated first two squared derivatives of the regression function. It is shown that in many situations ordinary difference-based estimators are more appropriate for estimating the variance, because they control the bias much better and hence have a much better overall performance. It is also demonstrated that Rice's estimator does not always behave well. Data-driven guidelines are given to select the estimator with the smallest MSE.  相似文献   

2.
Ratio estimators of effect are ordinarily obtained by exponentiating maximum-likelihood estimators (MLEs) of log-linear or logistic regression coefficients. These estimators can display marked positive finite-sample bias, however. We propose a simple correction that removes a substantial portion of the bias due to exponentiation. By combining this correction with bias correction on the log scale, we demonstrate that one achieves complete removal of second-order bias in odds ratio estimators in important special cases. We show how this approach extends to address bias in odds or risk ratio estimators in many common regression settings. We also propose a class of estimators that provide reduced mean bias and squared error, while allowing the investigator to control the risk of underestimating the true ratio parameter. We present simulation studies in which the proposed estimators are shown to exhibit considerable reduction in bias, variance, and mean squared error compared to MLEs. Bootstrapping provides further improvement, including narrower confidence intervals without sacrificing coverage.  相似文献   

3.
In this paper, the ridge estimation method is generalized to the median regression. Though the least absolute deviation (LAD) estimation method is robust in the presence of non-Gaussian or asymmetric error terms, it can still deteriorate into a severe multicollinearity problem when non-orthogonal explanatory variables are involved. The proposed method increases the efficiency of the LAD estimators by reducing the variance inflation and giving more room for the bias to get a smaller mean squared error of the LAD estimators. This paper includes an application of the new methodology and a simulation study as well.  相似文献   

4.
Abstract.  A new kernel distribution function (df) estimator based on a non-parametric transformation of the data is proposed. It is shown that the asymptotic bias and mean squared error of the estimator are considerably smaller than that of the standard kernel df estimator. For the practical implementation of the new estimator a data-based choice of the bandwidth is proposed. Two possible areas of application are the non-parametric smoothed bootstrap and survival analysis. In the latter case new estimators for the survival function and the mean residual life function are derived.  相似文献   

5.
Wavelet analysis has been proved to be a powerful statistical technique in the non parametric regression. In this paper, we propose non linear wavelet-based estimators for multivariable mean regression function with long-memory data. We also provide an asymptotic expansion for the mean integrated squared error (MISE) of the function estimators. This MISE expansion still works even when the underlying mean regression function is only piecewise smooth. This paper extends the corresponding results in the literature for single variable to multivariable case.  相似文献   

6.
Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.  相似文献   

7.
The small-sample bias and root mean squared error of several distribution-free estimators of the variance of the sample median are examined. A new estimator is proposed that is easy to compute and tends to have the smallest bias and root mean squared error.  相似文献   

8.
The Lomax (Pareto II) distribution has found wide application in a variety of fields. We analyze the second-order bias of the maximum likelihood estimators of its parameters for finite sample sizes, and show that this bias is positive. We derive an analytic bias correction which reduces the percentage bias of these estimators by one or two orders of magnitude, while simultaneously reducing relative mean squared error. Our simulations show that this performance is very similar to that of a parametric bootstrap correction based on a linear bias function. Three examples with actual data illustrate the application of our bias correction.  相似文献   

9.
In this paper properties of two estimators of Cpm are investigated in terms of changes in the process mean and variance. The bias and mean squared error of these estimators are derived. It can be shown that the estimate of Cpm proposed by Chan, Cheng and Spiring (1988) has smaller bias than the one proposed by Boyles (1991) and also has a smaller mean squared error under certain conditions. Various approximate confidence intervals for Cpm are obtained and are compared in terms of coverage probabilities, missed rate and average interval width.  相似文献   

10.
Parametrically guided non‐parametric regression is an appealing method that can reduce the bias of a non‐parametric regression function estimator without increasing the variance. In this paper, we adapt this method to the censored data case using an unbiased transformation of the data and a local linear fit. The asymptotic properties of the proposed estimator are established, and its performance is evaluated via finite sample simulations.  相似文献   

11.
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.  相似文献   

12.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

13.
Härdle & Marron (1990) treated the problem of semiparametric comparison of nonparametric regression curves by proposing a kernel-based estimator derived by minimizing a version of weighted integrated squared error. The resulting estimators of unknown transformation parameters are n-consistent, which prompts a consideration of issues. of optimality. We show that when the unknown mean function is periodic, an optimal nonparametric estimator may be motivated by an elegantly simple argument based on maximum likelihood estimation in a parametric model with normal errors. Strikingly, the asymptotic variance of an optimal estimator of θ does not depend at all on the manner of estimating error variances, provided they are estimated n-consistently. The optimal kernel-based estimator derived via these considerations is asymptotically equivalent to a periodic version of that suggested by Härdle & Marron, and so the latter technique is in fact optimal in this sense. We discuss the implications of these conclusions for the aperiodic case.  相似文献   

14.
In this paper, we propose robust randomized quantile regression estimators for the mean and (condition) variance functions of the popular heteroskedastic non parametric regression model. Unlike classical approaches which consider quantile as a fixed quantity, our method treats quantile as a uniformly distributed random variable. Our proposed method can be employed to estimate the error distribution, which could significantly improve prediction results. An automatic bandwidth selection scheme will be discussed. Asymptotic properties and relative efficiencies of the proposed estimators are investigated. Our empirical results show that the proposed estimators work well even for random errors with infinite variances. Various numerical simulations and two real data examples are used to demonstrate our methodologies.  相似文献   

15.
Strategies for improving fixed non-negative kernel estimators have focused on reducing the bias, either by employing higher-order kernels or by adjusting the bandwidth locally. Intuitively, bandwidths in the tails should be relatively larger in order to reduce wiggles since there is less data available in the tails. We show that in regions where the density function is convex, it is theoretically possible to find local bandwidths such that the pointwise bias is exactly zero. The corresponding pointwise mean squared error converges at the parametric rate of O ( n −1 ) rather than the slower O ( n −4/5). These so-called zero-bias bandwidths are constant and are usually orders of magnitude larger than the optimal locally adaptive bandwidths predicted by asymptotic mean squared error analysis. We describe data-based algorithms for estimating zero-bias bandwidths over intervals where the density is convex. We find that our particular density estimator attains the usual O ( n −4/5) rate. However, we demonstrate that the algorithms can provide significant improvement in mean squared error, often clearly visually superior curves, and a new operating point in the usual bias-variance tradeoff.  相似文献   

16.
The binary logistic regression is a commonly used statistical method when the outcome variable is dichotomous or binary. The explanatory variables are correlated in some situations of the logit model. This problem is called multicollinearity. It is known that the variance of the maximum likelihood estimator (MLE) is inflated in the presence of multicollinearity. Therefore, in this study, we define a new two-parameter ridge estimator for the logistic regression model to decrease the variance and overcome multicollinearity problem. We compare the new estimator to the other well-known estimators by studying their mean squared error (MSE) properties. Moreover, a Monte Carlo simulation is designed to evaluate the performances of the estimators. Finally, a real data application is illustrated to show the applicability of the new method. According to the results of the simulation and real application, the new estimator outperforms the other estimators for all of the situations considered.  相似文献   

17.
Kupper and Meydrech and Myers and Lahoda introduced the mean squared error (MSE) approach to study response surface designs, Duncan and DeGroot derived a criterion for optimality of linear experimental designs based on minimum mean squared error. However, minimization of the MSE of an estimator maxr renuire some knowledge about the unknown parameters. Without such knowledge construction of designs optimal in the sense of MSE may not be possible. In this article a simple method of selecting the levels of regressor variables suitable for estimating some functions of the parameters of a lognormal regression model is developed using a criterion for optimality based on the variance of an estimator. For some special parametric functions, the criterion used here is equivalent to the criterion of minimizing the mean squared error. It is found that the maximum likelihood estimators of a class of parametric functions can be improved substantially (in the sense of MSE) by proper choice of the values of regressor variables. Moreover, our approach is applicable to analysis of variance as well as regression designs.  相似文献   

18.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

19.
Abstract.  In this paper, a two-stage estimation method for non-parametric additive models is investigated. Differing from Horowitz and Mammen's two-stage estimation, our first-stage estimators are designed not only for dimension reduction but also as initial approximations to all of the additive components. The second-stage estimators are obtained by using one-dimensional non-parametric techniques to refine the first-stage ones. From this procedure, we can reveal a relationship between the regression function spaces and convergence rate, and then provide estimators that are optimal in the sense that, better than the usual one-dimensional mean-squared error (MSE) of the order n −4/5 , the MSE of the order n − 1 can be achieved when the underlying models are actually parametric. This shows that our estimation procedure is adaptive in a certain sense. Also it is proved that the bandwidth that is selected by cross-validation depends only on one-dimensional kernel estimation and maintains the asymptotic optimality. Simulation studies show that the new estimators of the regression function and all components outperform the existing estimators, and their behaviours are often similar to that of the oracle estimator.  相似文献   

20.
This paper presents the results of a Monte Carlo study of OLS and GLS based adaptive ridge estimators for regression problems in which the independent variables are collinear and the errors are autocorrelated. It studies the effects of degree of collinearity, magnitude of error variance, orientation of the parameter vector and serial correlation of the independent variables on the mean squared error performance of these estimators. Results suggest that such estimators produce greatly improved performance in favorable portions of the parameter space. The GLS based methods are best when the independent variables are also serially correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号