首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In this paper, we study the MDPDE (minimizing a density power divergence estimator), proposed by Basu et al. (Biometrika 85:549–559, 1998), for mixing distributions whose component densities are members of some known parametric family. As with the ordinary MDPDE, we also consider a penalized version of the estimator, and show that they are consistent in the sense of weak convergence. A simulation result is provided to illustrate the robustness. Finally, we apply the penalized method to analyzing the red blood cell SLC data presented in Roeder (J Am Stat Assoc 89:487–495, 1994). This research was supported (in part) by KOSEF through Statistical Research Center for Complex Systems at Seoul National University.  相似文献   

2.
We consider the problem of variable screening in ultra-high-dimensional generalized linear models (GLMs) of nonpolynomial orders. Since the popular SIS approach is extremely unstable in the presence of contamination and noise, we discuss a new robust screening procedure based on the minimum density power divergence estimator (MDPDE) of the marginal regression coefficients. Our proposed screening procedure performs well under pure and contaminated data scenarios. We provide a theoretical motivation for the use of marginal MDPDEs for variable screening from both population as well as sample aspects; in particular, we prove that the marginal MDPDEs are uniformly consistent leading to the sure screening property of our proposed algorithm. Finally, we propose an appropriate MDPDE-based extension for robust conditional screening in GLMs along with the derivation of its sure screening property. Our proposed methods are illustrated through extensive numerical studies along with an interesting real data application.  相似文献   

3.
In this study, we consider a robust estimation for zero-inflated Poisson autoregressive models using the minimum density power divergence estimator designed by Basu et al. [Robust and efficient estimation by minimising a density power divergence. Biometrika. 1998;85:549–559]. We show that under some regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. The performance of the estimator is evaluated through Monte Carlo simulations. A real data analysis using New South Wales crime data is also provided for illustration.  相似文献   

4.
An identity for exponential distributions with an unknown common location parameter and unknown and possibly unequal scale parameters is established.Through use of the identity the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased estimator (UMVUE) of a quantile of an exponential population are compared under the squared error loss.A class of estimators dominating both MLE and UMVUE is obtained by using the identity.  相似文献   

5.
Abstract.  A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.  相似文献   

6.
The uniformly minimum variance unbiased estimator (UMVUE) of the variance of the inverse Gaussian distribution is shown to be inadmissible in terms of the mean squared error, and a dominating estimator is given. A dominating estimator to the maximum likelihood estimator (MLE) of the variance and estimators dominating the MLE's and the UMVUE's of other parameters are also given.  相似文献   

7.
Analysis of random censored life-time data along with some related stochastic covariables is of great importance in many applied sciences. The parametric estimation technique commonly used under this set-up is based on the efficient but non-robust likelihood approach. In this paper, we propose a robust parametric estimator for censored data with stochastic covariates based on the minimum density power divergence approach. The resulting estimator also has competitive efficiency with respect to the maximum likelihood estimator under pure data. The strong robustness property of the proposed estimator with respect to the presence of outliers is examined and illustrated through an appropriate real data example and simulation studies. Further, the theoretical asymptotic properties of the proposed estimator are also derived in terms of a general class of M-estimators based on the estimating equation.  相似文献   

8.
This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root-finding algorithm implemented using stochastic approximation methods. Both algorithms are shown to be improvements over the MLE, measured in terms of mean square error and mean absolute deviation. An illustration to US macroeconomic time series is given.  相似文献   

9.
In a classical gambler's ruin problem, the distribution of the number of games lost till ruin is considered, which we call the lost game distribution (LGD). Some applications of LGD in the theory of queues, in the theory of epidemic and in certain clustering and branching models are mentioned. The maximum likelihood estimation of LGD in the framework of modified power series distribution (MPSD), introduced by the author (1974), is studied. The variance and bias of the MLE are given and the actual mean of the MLE is obtained by discussing the negative moments of the MPSD in general. The minimum variance unbiased estimator of θk (k≥1) is obtained employing the technique developed by the author (1977) for the class of MPSD.  相似文献   

10.
A novel method is proposed for choosing the tuning parameter associated with a family of robust estimators. It consists of minimising estimated mean squared error, an approach that requires pilot estimation of model parameters. The method is explored for the family of minimum distance estimators proposed by [Basu, A., Harris, I.R., Hjort, N.L. and Jones, M.C., 1998, Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559.] Our preference in that context is for a version of the method using the L 2 distance estimator [Scott, D.W., 2001, Parametric statistical modeling by minimum integrated squared error. Technometrics, 43, 274–285.] as pilot estimator.  相似文献   

11.
Over forty years ago, Grenander derived the MLE of a monotone decreasing density f with known mode. Prakasa Rao obtained the asymptotic distribution of this estimator at a fixed point x where f' (x) < 0. Here, we obtain the asymptotic distribution of this estimator at a fixed point x when f is constant and nonzero in some open neighborhood of x. This limiting distribution is expressible as the convolution of a closed-form density and a rescaled standard normal density. Groeneboom (1983) derived the aforementioned closed-form density and we provide an alternative, more direct derivation.  相似文献   

12.
Estimation of Weibull distribution shape and scale parameters is accomplished through use of symmetrically located percentiles from a sample. The process requires algebraic solution of two equations derived from the cumulative distribution function. Three alternatives examined are compared for precision and variability with maximum likelihood (MLE) and least squares (LS) estimators. The best percentile estimator (using the 10th and 90th) is inferior to MLE in variability and to one least squares estimator in accuracy and variability to a small degree. However, application of a correction factor related to sample size improves the percentile estimator substantially, making it more accurate than LS.  相似文献   

13.
This article addresses two methods of estimation of the probability density function (PDF) and cumulative distribution function (CDF) for the Lindley distribution. Following estimation methods are considered: uniformly minimum variance unbiased estimator (UMVUE) and maximum likelihood estimator (MLE). Since the Lindley distribution is more flexible than the exponential distribution, the same estimators have been found out for the exponential distribution and compared. Monte Carlo simulations and a real data analysis are performed to compare the performances of the proposed methods of estimation.  相似文献   

14.
Based on a multiply type-II censored sample, the maximum likelihood estimator (MLE) and Bayes estimator for the scale parameter and the reliability function of the Rayleigh distribution are derived. However, since the MLE does not exist an explicit form, an approximate MLE which is the maximizer of an approximate likelihood function will be given. The comparisons among estimators are investigated through Monte Carlo simulations. An illustrative example with the real data concerning the 23 ball bearing in the life test is presented.  相似文献   

15.
We consider the right truncated exponential distribution where the truncation point is unknown and show that the ML equation has a unique solution over an extended parameter space. In the case of the estimation of the truncation point T we show that the asymptotic distribution of the MLE is not centered at T. A modified MLE is introduced which outperforms all other considered estimators including the minimum variance unbiased estimator. Asymptotic as well as small sample properties of different estimators are investigated and compared. The truncated exponential distribution has an increasing failure rate, ideally suited for use as a survival distribution for biological and industrial data.  相似文献   

16.
A onestep estimator, which is an approximation to the unconditional maximum likelihood estimator (MLE) of the coefficient matrices of a Gaussian vector autoregressive process is presented. The onestep estimator is easy to compute and can be computed using standard software. Unlike the computation of the unconditional MLE, the computation of the onestep estimator does not require any iterative optimization and the computation is numerically stable. In finite samples the onestep estimator generally has smaller mean square error than the ordinary least squares estimator. In a simple model, where the unconditional MLE can be computed, numerical investigation shows that the onestep estimator is slightly worse than the unconditional MLE in terms of mean square error but superior to the ordinary least squares estimator. The limiting distribution of the onestep estimator for processes with some unit roots is derived.  相似文献   

17.
In this article, we discuss the estimation of the common variance of several normal populations with tree-order restricted means. We discuss the asymptotic properties of the maximum-likelihood estimator (MLE) of the variance as the number of populations tends to infinity. We consider several cases of various orders of the sample sizes and show that the MLE of the variance may or may not be consistent or be asymptotically normal.  相似文献   

18.
The maximum likelihood estimator (MLE) for the survival function STunder the proportional hazards model of censorship is derived and shown to differ from the Abdushukurov-Cheng-Lin estimator when the class of allowable distributions includes all continuous and discrete distributions. The estimators are compared via an example. The MLE is calculated using a Newton-Raphson iterative procedure and implemented via a FORTRAN algorithm.  相似文献   

19.
The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.  相似文献   

20.
Summary. The maximum likelihood estimator (MLE) for the proportional hazards model with partly interval-censored data is studied. Under appropriate regularity conditions, the MLEs of the regression parameter and the cumulative hazard function are shown to be consistent and asymptotically normal. Two methods to estimate the variance–covariance matrix of the MLE of the regression parameter are considered, based on a generalized missing information principle and on a generalized profile information procedure. Simulation studies show that both methods work well in terms of the bias and variance for samples of moderate size. An example illustrates the methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号