首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that the profile empirical likelihood method based on estimating equations is computationally intensive when the number of nuisance parameters is large. Recently, Li, Peng, & Qi (2011) proposed a jackknife empirical likelihood method for constructing confidence regions for the parameters of interest by estimating the nuisance parameters separately. However, when the estimators for the nuisance parameters have no explicit formula, the computation of the jackknife empirical likelihood method is still intensive. In this paper, an approximate jackknife empirical likelihood method is proposed to reduce the computation in the jackknife empirical likelihood method when the nuisance parameters cannot be estimated explicitly. A simulation study confirms the advantage of the new method. The Canadian Journal of Statistics 40: 110–123; 2012 © 2012 Statistical Society of Canada  相似文献   

2.
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets.  相似文献   

3.
Since its introduction by Owen (1988, 1990), the empirical likelihood method has been extensively investigated and widely used to construct confidence regions and to test hypotheses in the literature. For a large class of statistics that can be obtained via solving estimating equations, the empirical likelihood function can be formulated from these estimating equations as proposed by Qin and Lawless (1994). If only a small part of parameters is of interest, a profile empirical likelihood method has to be employed to construct confidence regions, which could be computationally costly. In this article the authors propose a jackknife empirical likelihood method to overcome this computational burden. This proposed method is easy to implement and works well in practice. The Canadian Journal of Statistics 39: 370–384; 2011 © 2011 Statistical Society of Canada  相似文献   

4.
Abstract.  A kernel regression imputation method for missing response data is developed. A class of bias-corrected empirical log-likelihood ratios for the response mean is defined. It is shown that any member of our class of ratios is asymptotically chi-squared, and the corresponding empirical likelihood confidence interval for the response mean is constructed. Our ratios share some of the desired features of the existing methods: they are self-scale invariant and no plug-in estimators for the adjustment factor and asymptotic variance are needed; when estimating the non-parametric function in the model, undersmoothing to ensure root- n consistency of the estimator for the parameter is avoided. Since the range of bandwidths contains the optimal bandwidth for estimating the regression function, the existing data-driven algorithm is valid for selecting an optimal bandwidth. We also study the normal approximation-based method. A simulation study is undertaken to compare the empirical likelihood with the normal approximation method in terms of coverage accuracies and average lengths of confidence intervals.  相似文献   

5.
Abstract.  We propose an easy to implement method for making small sample parametric inference about the root of an estimating equation expressible as a quadratic form in normal random variables. It is based on saddlepoint approximations to the distribution of the estimating equation whose unique root is a parameter's maximum likelihood estimator (MLE), while substituting conditional MLEs for the remaining (nuisance) parameters. Monotoncity of the estimating equation in its parameter argument enables us to relate these approximations to those for the estimator of interest. The proposed method is equivalent to a parametric bootstrap percentile approach where Monte Carlo simulation is replaced by saddlepoint approximation. It finds applications in many areas of statistics including, nonlinear regression, time series analysis, inference on ratios of regression parameters in linear models and calibration. We demonstrate the method in the context of some classical examples from nonlinear regression models and ratios of regression parameter problems. Simulation results for these show that the proposed method, apart from being generally easier to implement, yields confidence intervals with lengths and coverage probabilities that compare favourably with those obtained from several competing methods proposed in the literature over the past half-century.  相似文献   

6.
In this article, we apply the empirical likelihood method to make inference on the bivariate survival function of paired failure times by estimating the survival function of censored time with the Kaplan–Meier estimator. Adjusted empirical likelihood (AEL) confidence intervals for the bivariate survival function are developed. We conduct a simulation study to compare the proposed AEL method with other methods. The simulation study shows the proposed AEL method has better performance than other existing methods. We illustrate the proposed method by analyzing the skin graft data.  相似文献   

7.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods.  相似文献   

8.
This paper introduces a new shrinkage estimator for the negative binomial regression model that is a generalization of the estimator proposed for the linear regression model by Liu [A new class of biased estimate in linear regression, Comm. Stat. Theor. Meth. 22 (1993), pp. 393–402]. This shrinkage estimator is proposed in order to solve the problem of an inflated mean squared error of the classical maximum likelihood (ML) method in the presence of multicollinearity. Furthermore, the paper presents some methods of estimating the shrinkage parameter. By means of Monte Carlo simulations, it is shown that if the Liu estimator is applied with these shrinkage parameters, it always outperforms ML. The benefit of the new estimation method is also illustrated in an empirical application. Finally, based on the results from the simulation study and the empirical application, a recommendation regarding which estimator of the shrinkage parameter that should be used is given.  相似文献   

9.
Empirical Likelihood for Censored Linear Regression   总被引:5,自引:0,他引:5  
In this paper we investigate the empirical likelihood method in a linear regression model when the observations are subject to random censoring. An empirical likelihood ratio for the slope parameter vector is defined and it is shown that its limiting distribution is a weighted sum of independent chi-square distributions. This reduces to the empirical likelihood to the linear regression model first studied by Owen (1991) if there is no censoring present. Some simulation studies are presented to compare the empirical likelihood method with the normal approximation based method proposed in Lai et al. (1995). It was found that the empirical likelihood method performs much better than the normal approximation method.  相似文献   

10.
We investigate empirical likelihood for the additive hazards model with current status data. An empirical log-likelihood ratio for a vector or subvector of regression parameters is defined and its limiting distribution is shown to be a standard chi-squared distribution. The proposed inference procedure enables us to make empirical likelihood-based inference for the regression parameters. Finite sample performance of the proposed method is assessed in simulation studies to compare with that of a normal approximation method, it shows that the empirical likelihood method provides more accurate inference than the normal approximation method. A real data example is used for illustration.  相似文献   

11.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed.  相似文献   

12.
This article deals with a new profile empirical-likelihood inference for a class of frequently used single-index-coefficient regression models (SICRM), which were proposed by Xia and Li (J. Am. Stat. Assoc. 94:1275–1285, 1999a). Applying the empirical likelihood method (Owen in Biometrika 75:237–249, 1988), a new estimated empirical log-likelihood ratio statistic for the index parameter of the SICRM is proposed. To increase the accuracy of the confidence region, a new profile empirical likelihood for each component of the relevant parameter is obtained by using maximum empirical likelihood estimators (MELE) based on a new and simple estimating equation for the parameters in the SICRM. Hence, the empirical likelihood confidence interval for each component is investigated. Furthermore, corrected empirical likelihoods for functional components are also considered. The resulting statistics are shown to be asymptotically standard chi-squared distributed. Simulation studies are undertaken to assess the finite sample performance of our method. A study of real data is also reported.  相似文献   

13.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

14.
The Lorenz curve describes the wealth proportion for an income-ordered population. In this paper, we introduce a kernel smoothing estimator for the Lorenz curve and propose a smoothed jackknife empirical likelihood method for constructing confidence intervals of Lorenz ordinates. Extensive simulation studies are conducted to evaluate finite sample performances of the proposed methods. A real dataset of Georgia professor’s income is used to illustrate the proposed methods.  相似文献   

15.
Generalized partially linear varying-coefficient models (GPLVCM) are frequently used in statistical modeling. However, the statistical inference of the GPLVCM, such as confidence region/interval construction, has not been very well developed. In this article, empirical likelihood-based inference for the parametric components in the GPLVCM is investigated. Based on the local linear estimators of the GPLVCM, an estimated empirical likelihood-based statistic is proposed. We show that the resulting statistic is asymptotically non-standard chi-squared. By the proposed empirical likelihood method, the confidence regions for the parametric components are constructed. In addition, when some components of the parameter are of particular interest, the construction of their confidence intervals is also considered. A simulation study is undertaken to compare the empirical likelihood and the other existing methods in terms of coverage accuracies and average lengths. The proposed method is applied to a real example.  相似文献   

16.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset.  相似文献   

17.
We consider a random effects quantile regression analysis of clustered data and propose a semiparametric approach using empirical likelihood. The random regression coefficients are assumed independent with a common mean, following parametrically specified distributions. The common mean corresponds to the population-average effects of explanatory variables on the conditional quantile of interest, while the random coefficients represent cluster specific deviations in the covariate effects. We formulate the estimation of the random coefficients as an estimating equations problem and use empirical likelihood to incorporate the parametric likelihood of the random coefficients. A likelihood-like statistical criterion function is yield, which we show is asymptotically concave in a neighborhood of the true parameter value and motivates its maximizer as a natural estimator. We use Markov Chain Monte Carlo (MCMC) samplers in the Bayesian framework, and propose the resulting quasi-posterior mean as an estimator. We show that the proposed estimator of the population-level parameter is asymptotically normal and the estimators of the random coefficients are shrunk toward the population-level parameter in the first order asymptotic sense. These asymptotic results do not require Gaussian random effects, and the empirical likelihood based likelihood-like criterion function is free of parameters related to the error densities. This makes the proposed approach both flexible and computationally simple. We illustrate the methodology with two real data examples.  相似文献   

18.
Rank regression procedures have been proposed and studied for numerous research applications that do not satisfy the underlying assumptions of the more common linear regression models. This article develops confidence regions for the slope parameter of rank regression using an empirical likelihood (EL) ratio method. It has the advantage of not requiring variance estimation which is required for the normal approximation method. The EL method is also range respecting and results in asymmetric confidence intervals. Simulation studies are used to compare and evaluate normal approximation versus EL inference methods for various conditions such as different sample size or error distribution. The simulation study demonstrates our proposed EL method almost outperforms the traditional method in terms of coverage probability, lower-tail side error, and upper-tail side error. An application of stability analysis also shows the EL method results in shorter confidence intervals for real life data.  相似文献   

19.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method.  相似文献   

20.
This article aims at making an empirical likelihood inference of regression parameter in partial linear model when the response variable is right censored randomly. The present studies are mainly designed to use empirical likelihood (EL) method based on synthetic dependent data, and the result cannot be applied directly due to the unknown weights in it. In this paper, we introduce a censored empirical log-likelihood ratio and demonstrate that its limiting distribution is a standard chi-square distribution. The estimating procedure of β is developed based on piecewise polynomial method. As a result, the p-value of test and the confidence interval can be obtained without estimating other quantities. Some simulation studies are conducted to highlight the performance of the proposed EL method, and the results show a good performance. Finally, we apply our method into the real example of multiple myeloma data and show the proof of theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号