首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local maximum likelihood estimation is a nonparametric counterpart of the widely used parametric maximum likelihood technique. It extends the scope of the parametric maximum likelihood method to a much wider class of parametric spaces. Associated with this nonparametric estimation scheme is the issue of bandwidth selection and bias and variance assessment. This paper provides a unified approach to selecting a bandwidth and constructing confidence intervals in local maximum likelihood estimation. The approach is then applied to least squares nonparametric regression and to nonparametric logistic regression. Our experiences in these two settings show that the general idea outlined here is powerful and encouraging.  相似文献   

2.
This article considers analyzing longitudinal binary data semiparametrically and proposing GEE-Smoothing spline in the estimation of parametric and nonparametric components. The method is an extension of the parametric generalized estimating equation to semiparametric. The nonparametric component is estimated by smoothing spline approach, i.e., natural cubic spline. We use profile algorithm in the estimation of both parametric and nonparametric components. Properties of the estimators are evaluated by simulation.  相似文献   

3.
In this paper we propose a test for the significance of categorical predictors in nonparametric regression models. The test is fully data-driven and employs cross-validated smoothing parameter selection while the null distribution of the test is obtained via bootstrapping. The proposed approach allows applied researchers to test hypotheses concerning categorical variables in a fully nonparametric and robust framework, thereby deflecting potential criticism that a particular finding is driven by an arbitrary parametric specification. Simulations reveal that the test performs well, having significantly better power than a conventional frequency-based nonparametric test. The test is applied to determine whether OECD and non-OECD countries follow the same growth rate model or not. Our test suggests that OECD and non-OECD countries follow different growth rate models, while the tests based on a popular parametric specification and the conventional frequency-based nonparametric estimation method fail to detect any significant difference.  相似文献   

4.
In this article, we suggest a semi-parametric estimation for Forward–Backward Stochastic Differential Equations (FBSDE), with a linear generator. Both the nonparametric and parametric estimators are computationally feasible and the asymptotic properties are standard in the sense of normality. Although there is a plug-in nonparametric estimator in parametric estimation, the high order kernel, under-smoothing and bias correction are not required. Some simulation studies are also given to illustrate our methods.  相似文献   

5.
Summary. On the basis of serological data from prevalence studies of rubella, mumps and hepatitis A, the paper describes a flexible local maximum likelihood method for the estimation of the rate at which susceptible individuals acquire infection at different ages. In contrast with parametric models that have been used before in the literature, the local polynomial likelihood method allows this age-dependent force of infection to be modelled without making any assumptions about the parametric structure. Moreover, this method allows for simultaneous nonparametric estimation of age-specific incidence and prevalence. Unconstrained models may lead to negative estimates for the force of infection at certain ages. To overcome this problem and to guarantee maximal flexibility, the local smoother can be constrained to be monotone. It turns out that different parametric and nonparametric estimates of the force of infection can exhibit considerably different qualitative features like location and the number of maxima, emphasizing the importance of a well-chosen flexible statistical model.  相似文献   

6.
Two-component mixture cure rate model is popular in cure rate data analysis with the proportional hazards and accelerated failure time (AFT) models being the major competitors for modelling the latency component. [Wang, L., Du, P., and Liang, H. (2012), ‘Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components’, Biometrics, 68, 726–735] first proposed a nonparametric mixture cure rate model where the latency component assumes proportional hazards with nonparametric covariate effects in the relative risk. Here we consider a mixture cure rate model where the latency component assumes AFTs with nonparametric covariate effects in the acceleration factor. Besides the more direct physical interpretation than the proportional hazards, our model has an additional scalar parameter which adds more complication to the computational algorithm as well as the asymptotic theory. We develop a penalised EM algorithm for estimation together with confidence intervals derived from the Louis formula. Asymptotic convergence rates of the parameter estimates are established. Simulations and the application to a melanoma study shows the advantages of our new method.  相似文献   

7.
This article proposes a method for estimating principal points for a multivariate binary distribution, assuming a log-linear model for the distribution. Through numerical simulation studies, the proposed parametric estimation method using a log-linear model is compared with a nonparametric estimation method.  相似文献   

8.
Accurate estimation of an underlying function and its derivatives is one of the central problems in statistics. Parametric forms are often proposed based on the expert opinion or prior knowledge of the underlying function. However, these strict parametric assumptions may result in biased estimates when they are not completely accurate. Meanwhile, nonparametric smoothing methods, which do not impose any parametric form, are quite flexible. We propose a parametric penalized spline smoothing method, which has the same flexibility as the nonparametric smoothing methods. It also uses the prior knowledge of the underlying function by defining an additional penalty term using the distance of the fitted function to the assumed parametric function. Our simulation studies show that the parametric penalized spline smoothing method can obtain more accurate estimates of the function and its derivatives than the penalized spline smoothing method. The parametric penalized spline smoothing method is also demonstrated by estimating the human height function and its derivatives from the real data.  相似文献   

9.
Degradation analysis is a useful technique when life tests result in few or even no failures. The degradation measurements are recorded over time and the estimation of time-to-failure distribution plays a vital role in degradation analysis. The parametric method to estimate the time-to-failure distribution assumed a specific parametric model with known shape for the random effects parameter. To avoid any assumption about the model shape, a nonparametric method can be used. In this paper, we suggest to use the nonparametric fourth-order kernel method to estimate the time-to-failure distribution and its percentiles for the simple linear degradation model. The performances of the proposed method are investigated and compared with the classical kernel; maximum likelihood and ordinary least squares methods via simulation technique. The numerical results show the good performance of the fourth-order kernel method and demonstrate its superiority over the parametric method when there is no information about the shape of the random effect parameter distribution.  相似文献   

10.
We consider here ergodic homogeneous Markov chains with countable state spaces. The entropy rate of the chain is an explicit function of its transition and stationary distributions. We construct estimators for this entropy rate and for the entropy of the stationary distribution of the chain, in the parametric and nonparametric cases. We study estimation from one sample with long length and from many independent samples with given length. In the parametric case, the estimators are deduced by plug-in from the maximum likelihood estimator of the parameter. In the nonparametric case, the estimators are deduced by plug-in from the empirical estimators of the transition and stationary distributions. They are proven to have good asymptotic properties.  相似文献   

11.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

12.
ABSTRACT

We propose a new semiparametric Weibull cure rate model for fitting nonlinear effects of explanatory variables on the mean, scale and cure rate parameters. The regression model is based on the generalized additive models for location, scale and shape, for which any or all distribution parameters can be modeled as parametric linear and/or nonparametric smooth functions of explanatory variables. We present methods to select additive terms, model estimation and validation, where all computational codes are presented in a simple way such that any R user can fit the new model. Biases of the parameter estimates caused by models specified erroneously are investigated through Monte Carlo simulations. We illustrate the usefulness of the new model by means of two applications to real data. We provide computational codes to fit the new regression model in the R software.  相似文献   

13.
In this paper, we consider partially linear additive models with an unknown link function, which include single‐index models and additive models as special cases. We use polynomial spline method for estimating the unknown link function as well as the component functions in the additive part. We establish that convergence rates for all nonparametric functions are the same as in one‐dimensional nonparametric regression. For a faster rate of the parametric part, we need to define appropriate ‘projection’ that is more complicated than that defined previously for partially linear additive models. Compared to previous approaches, a distinct advantage of our estimation approach in implementation is that estimation directly reduces estimation in the single‐index model and can thus deal with much larger dimensional problems than previous approaches for additive models with unknown link functions. Simulations and a real dataset are used to illustrate the proposed model.  相似文献   

14.
Mixture cure models are widely used when a proportion of patients are cured. The proportional hazards mixture cure model and the accelerated failure time mixture cure model are the most popular models in practice. Usually the expectation–maximisation (EM) algorithm is applied to both models for parameter estimation. Bootstrap methods are used for variance estimation. In this paper we propose a smooth semi‐nonparametric (SNP) approach in which maximum likelihood is applied directly to mixture cure models for parameter estimation. The variance can be estimated by the inverse of the second derivative of the SNP likelihood. A comprehensive simulation study indicates good performance of the proposed method. We investigate stage effects in breast cancer by applying the proposed method to breast cancer data from the South Carolina Cancer Registry.  相似文献   

15.
我国费雪效应的非参数检验   总被引:5,自引:1,他引:4  
本文基于我国1990:01—2007:04期间的名义利率与通货膨胀率月度数据非线性变化的特征,应用非参数单位根和非参数协整理论检验我国是否存在费雪效应, 进而应用非参数局部线性变窗宽估计计算我国的费雪系数。由此产生的结论为:第一,非参数单位根检验发现我国名义利率与通货膨胀率都是非平稳的单位根过程;第二,非参数协整检验的结论为, 我国名义利率与通胀变化率之间存在长期的非线性协整关系, 这一结论表明我国至少存在弱的费雪效应;第三,非参数局部线性变窗宽估计计算的费雪效应(系数)的均值为0.4055,这一结果进一步支持我国存在弱的费雪效应,其隐含的意义为,当前加息对稳定通胀将产生正面效应,进一步, 如适时适度的调整利率, 很可能抑制当前较高的CPI向高通胀的转化。  相似文献   

16.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

17.
In this paper, we introduce a partially linear single-index additive hazards model with current status data. Both the unknown link function of the single-index term and the cumulative baseline hazard function are approximated by B-splines under a monotonicity constraint on the latter. The sieve method is applied to estimate the nonparametric and parametric components simultaneously. We show that, when the nonparametric link function is an exact B-spline, the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound and the rate of convergence of the estimator for the cumulative baseline hazard function is optimal. Simulation studies are presented to examine the finite sample performance of the proposed estimation method. For illustration, we apply the method to a clinical dataset with current status outcome.  相似文献   

18.
This paper proposes a class of nonparametric estimators for the bivariate survival function estimation under both random truncation and random censoring. In practice, the pair of random variables under consideration may have certain parametric relationship. The proposed class of nonparametric estimators uses such parametric information via a data transformation approach and thus provides more accurate estimates than existing methods without using such information. The large sample properties of the new class of estimators and a general guidance of how to find a good data transformation are given. The proposed method is also justified via a simulation study and an application on an economic data set.  相似文献   

19.
A general lower bound of minimax risk for absolute-error loss is given in terms of the Hellinger modulus of the estimation problem. The main results are applicable to various parametric, semi-parametric and nonparametric problems. Two examples of parametric estimation problems and two examples of density estimation problems are given. In all of these examples, the general lower bound achieves the convergence rates of minimax risk.  相似文献   

20.
A method for nonparametric estimation of density based on a randomly censored sample is presented. The density is expressed as a linear combination of cubic M -splines, and the coefficients are determined by pseudo-maximum-likelihood estimation (likelihood is maximized conditionally on data-dependent knots). By using regression splines (small number of knots) it is possible to reduce the estimation problem to a space of low dimension while preserving flexibility, thus striking a compromise between parametric approaches and ordinary nonparametric approaches based on spline smoothing. The number of knots is determined by the minimum AIC. Examples of simulated and real data are presented. Asymptotic theory and the bootstrap indicate that the precision and the accuracy of the estimates are satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号