首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hotelling's T2statistic has been used in constructing a multivariate control chart for individual observations. In Phase II operations, the distribution of the T2statistic is related to the F distribution provided the underlying population is multivariate normal. Thus, the upper control limit (UCL) is proportional to a percentile of the F distribution. However, if the process data show sufficient evidence of a marked departure from multivariate normality, the UCL based on the F distribution may be very inaccurate. In such situations, it will usually be helpful to determine the UCL based on the percentile of the estimated distribution for T2. In this paper, we use a kernel smoothing technique to estimate the distribution of the T2statistic as well as of the UCL of the T2chart, when the process data are taken from a multivariate non-normal distribution. Through simulations, we examine the sample size requirement and the in-control average run length of the T2control chart for sample observations taken from a multivariate exponential distribution. The paper focuses on the Phase II situation with individual observations.  相似文献   

2.
A control procedure is presented for monitoring changes in variation for a multivariate normal process in a Phase II operation where the subgroup size, m, is less than p, the number of variates. The methodology is based on a form of Wilk' statistic, which can be expressed as a function of the ratio of the determinants of two separate estimates of the covariance matrix. One estimate is based on the historical data set from Phase I and the other is based on an augmented data set including new data obtained in Phase II. The proposed statistic is shown to be distributed as the product of independent beta distributions that can be approximated using either a chi-square or F-distribution. An ARL study of the statistic is presented for a range of conditions for the population covariance matrix. Cases are considered where a p-variate process is being monitored using a sample of m observations per subgroup and m < p. Data from an industrial multivariate process is used to illustrate the proposed technique.  相似文献   

3.
Abstract

It is common to monitor several correlated quality characteristics using the Hotelling's T 2 statistic. However, T 2 confounds the location shift with scale shift and consequently it is often difficult to determine the factors responsible for out of control signal in terms of the process mean vector and/or process covariance matrix. In this paper, we propose a diagnostic procedure called ‘D-technique’ to detect the nature of shift. For this purpose, two sets of regression equations, each consisting of regression of a variable on the remaining variables, are used to characterize the ‘structure’ of the ‘in control’ process and that of ‘current’ process. To determine the sources responsible for an out of control state, it is shown that it is enough to compare these two structures using the dummy variable multiple regression equation. The proposed method is operationally simpler and computationally advantageous over existing diagnostic tools. The technique is illustrated with various examples.  相似文献   

4.
Hotelling's T2 statistic has many applications in multivariate analysis. In particular, it can be used to measure the influence that a particular observation vector has on parameter estimation. For example, in the bivariate case, there exists a direct relationship between the ellipse generated using a T2 statistic for individual observations and the hyperbolae generated using Hampel's influence function for the corresponding correlation coefficient. In this paper, we jointly use the components of an orthogonal decomposition of the T2 statistic and some influence functions to identify outliers or influential observations. Since the conditional components in the T2 statistic are related to the possible changes in the correlation between a variable and a group of other variables, we consider the theoretical influence functions of the correlations and multiple correlation coefficients. Finite-sample versions of these influence functions are used to find the estimated influence function values.  相似文献   

5.
The monitoring of process/product profiles is presently a growing and promising area of research in statistical process control. This study is aimed at developing monitoring schemes for nonlinear profiles with random effects. We utilize the technique of principal components analysis to analyze the covariance structure of the profiles and propose monitoring schemes based on principal component (PC) scores. The number of the PC scores used in constructing control charts is crucial to the detecting power. In the Phase I analysis of historical data, due to the dependency of the PC-scores, we adopt the usual Hotelling T 2 chart to check the stability. For Phase II monitoring, we study individual PC-score control charts, a combined chart scheme that combines all the PC-score charts, and a T 2 chart. Although an individual PC-score chart may be perfect for monitoring a particular mode of variation, a chart that can detect general shifts, such as the T 2 chart and the combined chart scheme, is more feasible in practice. The performances of the schemes under study are evaluated in terms of the average run length.  相似文献   

6.
A power study suggests that a good test of fit analysis for the binomial distribution is provided by a data-dependent Chernoff–Lehmann X 2 test with class expectations greater than unity, and its components. These data-dependent statistics involve arithmetically simple parameter estimation, convenient approximate distributions and provide a comprehensive assessment of how well the data agree with a binomial distribution. We suggest that a well-performed single test of fit statistic is the Anderson–Darling statistic.  相似文献   

7.
Statistics that usually accompany the regression model do not provide insight into the quality of the data or the potential influence of the individual observations on the estimates. In this study, the Q2 statistic is used as a criterion for detecting influential observations or outliers. The statistic is derived from the jackknifed residuals, the squared sum of which is generally known as the prediction sum of squares or PRESS. This article compares R 2 with Q2 and suggests that the latter be used as part of the data-quality check. It is shown, for two separate data sets obtained from regional cost of living and U.S. food industry studies, that in the presence of outliers the Q2 statistic can be negative, because it is sensitive to the choice of regressors and the inclusion of influential observations. Once the outliers are dropped from the sample, the discrepancy between Q2 and R 2 values is negligible.  相似文献   

8.
A general rank test procedure based on an underlying multinomial distribution is suggested for randomized block experiments with multifactor treatment combinations within each block. The Wald statistic for the multinomial is used to test hypotheses about the within–block rankings. This statistic is shown to be related to the one–sample Hotellingt's T2 statistic, suggesting a method for computing the test statistic using the standard statistical computer packages.  相似文献   

9.
We develop a ‘robust’ statistic T2 R, based on Tiku's (1967, 1980) MML (modified maximum likelihood) estimators of location and scale parameters, for testing an assumed meam vector of a symmetric multivariate distribution. We show that T2 R is one the whole considerably more powerful than the prominenet Hotelling T2 statistics. We also develop a robust statistic T2 D for testing that two multivariate distributions (skew or symmetric) are identical; T2 D seems to be usually more powerful than nonparametric statistics. The only assumption we make is that the marginal distributions are of the type (1/σk)f((x-μk)/σk) and the means and variances of these marginal distributions exist.  相似文献   

10.
In this paper, we consider testing the equality of two mean vectors with unequal covariance matrices. In the case of equal covariance matrices, we can use Hotelling’s T2 statistic, which follows the F distribution under the null hypothesis. Meanwhile, in the case of unequal covariance matrices, the T2 type test statistic does not follow the F distribution, and it is also difficult to derive the exact distribution. In this paper, we propose an approximate solution to the problem by adjusting the degrees of freedom of the F distribution. Asymptotic expansions up to the term of order N? 2 for the first and second moments of the U statistic are given, where N is the total sample size minus two. A new approximate degrees of freedom and its bias correction are obtained. Finally, numerical comparison is presented by a Monte Carlo simulation.  相似文献   

11.
There are many instances in which the quality of a product or constancy of a process is determined by the joint levels of several attributes or properties. During the conduct of such a process or the production of such a product, one wishes to detect as quickly as possible any departure from a satisfactory state, while at the same time identifying which attributes are responsible for the deviation. In most cases of practical interest, however, there exist correlations among the several properties of interest; this makes it advisable to monitor certain aggregate characteristics of the process, rather than observing its various components separately. When the mean vector of the quality attributes is the major concern, this aggregate monitoring function is most commonly implemented via a T 2 chart. The dependencies among attributes, however, complicate the determination of which are responsible when a deviation occurs. This paper presents an approach to help identify aberrant variables when Shewhart type multivariate control charts based on Hotelling's T 2 are in use.  相似文献   

12.
Hotelling’s T2 control chart with double warning lines   总被引:1,自引:1,他引:0  
Recent studies have shown that the T 2 control chart with variable sampling intervals (VSI) and/or variable sample sizes (VSS) detects process shifts faster than the traditional T 2 chart. This article extends these studies for processes that are monitored with VSI and VSS using double warning lines (T 2 —DWL). It is assumed that the length of time the process remains in control has exponential distribution. The properties of T 2 —DWL chart are obtained using Markov chains. The results show that the T 2 —DWL chart is quicker than VSI and/or VSS charts in detecting almost all shifts in the process mean.  相似文献   

13.
In statistical process control applications, the multivariate T 2 control chart based on Hotelling's T 2 statistic is useful for detecting the presence of special causes of variation. In particular, use of the T 2 statistic based on the successive differences covariance matrix estimator has been shown to be very effective in detecting the presence of a sustained step or ramp shift in the mean vector. However, the exact distribution of this statistic is unknown. In this article, we derive the maximum value of the T 2 statistic based on the successive differences covariance matrix estimator. This distributional property is crucial for calculating an approximate upper control limit of a T 2 control chart based on successive differences, as described in Williams et al. (2006 Williams , J. D. , Woodall , W. H. , Birch , J. B. , Sullivan , J. H. ( 2006 ). On the distribution of T 2 statistics based on successive differences . J. Qual. Technol. 38 : 217229 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

14.
Two procedures for testing equality of two proportions are compared in terms of asymptotic efficiency. The comparison favors use of a statistic equivalent to Goodman's Y 2 over the usual X 2 statistic in some cases including that of equal sample sizes. Numerical comparisons indicate that the asymptotic results have some relevance for moderate sample sizes.  相似文献   

15.
This study investigates the statistical properties of the adaptive Hotelling's T 2 charts with run rules in which the sample size and sampling interval are allowed to vary according on the current and past sampling points. The adaptive charts include variable sample size (VSS), variable sampling interval (VSI), and variable sample size and sampling interval (VSSI) charts. The adaptive Hotelling's T 2 charts with run rules are compared with the fixed sampling rate Hotelling's T 2 chart with run rules. The numerical results show that the VSS, VSI, and VSSI features improve the performance of the Hotelling's T 2 chart with run rules.  相似文献   

16.
We consider the problem of testing the equality of two population means when the population variances are not necessarily equal. We propose a Welch-type statistic, say T* c, based on Tiku!s ‘1967, 1980’ modified maximum likelihood estimators, and show that this statistic is robust to symmetric and moderately skew distributions. We investigate the power properties of the statistic T* c; T* c clearly seems to be more powerful than Yuen's ‘1974’ Welch-type robust statistic based on the trimmed sample means and the matching sample variances. We show that the analogous statistics based on the ‘adaptive’ robust estimators give misleading Type I errors. We generalize the results to testing linear contrasts among k population means  相似文献   

17.
This article studies the minima stable property of the general multivariate Pareto distributions MP(k)(I), MP(k)(II), MP(k)(III), MP(k)(IV) which can be applied to characterize the MP(k) distribution via its weighted ordered coordinates minima and marginal distribution. Also, the multivariate semi-Pareto distribution (denoted by MSP) is discerned in the class of geometric minima infinite divisible and geometric minima stable distributions. If the exponent measure is satisfied by some functional equation, then the geometric minima stable property can be used to characterize the MSP distribution. Finally, the finite sample minima infinite divisible property of the MP(k)(I), (II), and (IV) distributions is also discussed.  相似文献   

18.
The T 2 control chart is widely adopted in multivariate statistical process control. However, when dealing with asymmetrical or multimodal distributions using the traditional T 2 control chart, some points with relatively high occurrence possibility might be excluded, while some points with relatively low occurrence possibility might be accepted. Motived by the thought of the highest posterior density credible region, we develop a control chart based on the highest possibility region to solve this problem. It is shown that the proposed multivariate control chart will not only meet the false alarm requirement, but also ensure that all the in-control points are with relatively high occurrence possibility. The advantages and effectiveness of the proposed control chart are demonstrated by some numerical examples in the end.  相似文献   

19.
In this paper we consider the problem of testing the means of k multivariate normal populations with additional data from an unknown subset of the k populations. The purpose of this research is to offer test procedures utilizing all the available data for the multivariate analysis of variance problem because the additional data may contain valuable information about the parameters of the k populations. The standard procedure uses only the data from identified populations. We provide a test using all available data based upon Hotelling' s generalized T2statistic. The power of this test is computed using Betz's approximation of Hotelling' s generalized T2statistic by an F-distribution. A comparison of the power of the test and the standard test procedure is also given.  相似文献   

20.
A Bayesian analysis is provided for the Wilcoxon signed-rank statistic (T+). The Bayesian analysis is based on a sign-bias parameter φ on the (0, 1) interval. For the case of a uniform prior probability distribution for φ and for small sample sizes (i.e., 6 ? n ? 25), values for the statistic T+ are computed that enable probabilistic statements about φ. For larger sample sizes, approximations are provided for the asymptotic likelihood function P(T+|φ) as well as for the posterior distribution P(φ|T+). Power analyses are examined both for properly specified Gaussian sampling and for misspecified non Gaussian models. The new Bayesian metric has high power efficiency in the range of 0.9–1 relative to a standard t test when there is Gaussian sampling. But if the sampling is from an unknown and misspecified distribution, then the new statistic still has high power; in some cases, the power can be higher than the t test (especially for probability mixtures and heavy-tailed distributions). The new Bayesian analysis is thus a useful and robust method for applications where the usual parametric assumptions are questionable. These properties further enable a way to do a generic Bayesian analysis for many non Gaussian distributions that currently lack a formal Bayesian model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号