首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

2.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

3.
We discuss some problems connected with the role of record values and maximal values generated by sequences of random variables X1, X2,…, X n in the process of the growth of sums X1 +···+ Xn, n = 1, 2,….  相似文献   

4.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

5.
Let X1:n ≤ X2:n ≤···≤ Xn:n denote the order statistics of a sample of n independent random variables X1, X2,…, Xn, all identically distributed as some X. It is shown that if X has a log-convex [log-concave] density function, then the general spacing vector (Xk1:n, Xk2:n ? Xk1:n,…, Xkr:n ? Xkr?1:n) is MTP2 [S-MRR2] whenever 1 ≤ k1 < k2 <···< kr ≤ n and 1 ≤ r ≤ n. Multivariate likelihood ratio ordering of such general spacing vectors corresponding to two random samples is also considered. These extend some of the results in the literature for usual spacing vectors.  相似文献   

6.
Let X 1, X 2,… be a sequence of independent and identically distributed random variables, and let Y n , n = K, K + 1, K + 2,… be the corresponding backward moving average of order K. At epoch n ≥ K, the process Y n will be off target by the input X n if it exceeds a threshold. By introducing a two-state Markov chain, we define a level of significance (1 ? a)% to be the percentage of times that the moving average process stays on target. We establish a technique to evaluate, or estimate, a threshold, to guarantee that {Y n } will stay (1 ? a)% of times on target, for a given (1 ? a)%. It is proved that if the distribution of the inputs is exponential or normal, then the threshold will be a linear function in the mean of the distribution of inputs μ X . The slope and intercept of the line, in each case, are specified. It is also observed that for the gamma inputs, the threshold is merely linear in the reciprocal of the scale parameter. These linear relationships can be easily applied to estimate the desired thresholds by samples from the inputs.  相似文献   

7.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

8.
9.
10.
11.
12.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

13.
This paper deals with √n-consistent estimation of the parameter μ in the RCAR(l) model defined by the difference equation Xj=(μ+Uj)Xj-l+ej (jε Z), where {ej: jε Z} and {Uj: jε Z} are two independent sets of i.i.d. random variables with zero means, positive finite variances and E[(μ+U1)2] < 1. A class of asymptotically normal estimators of μ indexed by a family of bounded measurable functions is introduced. Then an estimator is constructed which is asymptotically equivalent to the best estimator in that class. This estimator, asymptotically equivalent to the quasi-maximum likelihood estimator derived in Nicholls & Quinn (1982), is much simpler to calculate and is asymptotically normal without the additional moment conditions those authors impose.  相似文献   

14.
In this article, we investigate the precise large deviations for a sum of independent but not identical distributed random variables. {X n , n ≥ 1} are independent non-negative random variables with distribution functions {F n , n ≥ 1}. We assume that the average of right tails of distribution functions F n is equivalent to some distribution function F with consistently varying tails. In applications, we apply our main results to a realistic example (Pareto-type distribution) and obtain a specific result.  相似文献   

15.
《统计学通讯:理论与方法》2012,41(13-14):2405-2418
In this article, we consider two linear models, ?1 = {y, X β, V 1} and ?2 = {y, X β, V 2}, which differ only in their covariance matrices. Our main focus lies on the difference of the best linear unbiased estimators, BLUEs, of X β under these models. The corresponding problems between the models {y, X β, I n } and {y, X β, V}, i.e., between the OLSE (ordinary least squares estimator) and BLUE, are pretty well studied. Our purpose is to review the corresponding considerations between the BLUEs of X β under ?1 and ?2. This article is an expository one presenting also new results.  相似文献   

16.
Some asymptotic expansions not necessarily related to the central limit theorem are studied. We first observe that the smoothing inequality of Esseen implies the proximity, in the Kolmogorov distance sense, of the distributions of the random variables of two random sequences satisfying a sort of general asymptotic relation. We then present several instances of this observation. A first example, partially motivated by the the statistical theory of high precision measurements, is given by a uniform asymptotic approximation to (g(X + μ n )) n∈?, where g is some smooth function, X is a random variable and (μ n ) n∈? is a sequence going to infinity; a multivariate version is also stated and proved. We finally present a second class of examples given by a randomization of the interesting parameter in some classical asymptotic formulas; namely, a generic Laplace's type integral, randomized by the sequence (μ n X) n∈?, X being a Gamma distributed random variable.  相似文献   

17.
Let {Xn} be a generalized autoregressive process of order ρ defined by Xnn(Xn-ρ,…,Xn-1)-ηm, where {φn} is a sequence of i.i.d. random maps taking values on H, and {ηn} is a sequence of i.i.d. random variables. Let H be a collection of Borel measurable functions on RP to R. By considering the associated Markov process, we obtain sufficient conditions for stationarity, (geometric) ergodicity of {Xn}.  相似文献   

18.
19.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

20.
Let X U (1) < X U (2) < … < X U ( n ) < … be the sequence of the upper record values from a population with common distribution function F. In this paper, we first give a theorem to characterize the generalized mixtures of geometric distribution by the relation between E[(X U ( n +1)X U ( n ))2|X U ( n ) = x] and the function of the failure rate of the distribution, for any positive integer n. Secondly, we also use the same relation to characterize the generalized mixtures of exponential distribution. The characterizing relations were motivated by the work of Balakrishnan and Balasubramanian (1995). Received: March 31, 1999; revised version: November 22, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号