首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For two-way layouts in a between subjects ANOVA design the aligned rank transform (ART) is compared with the parametric F-test as well as six other nonparametric methods: rank transform (RT), inverse normal transform (INT), a combination of ART and INT, Puri & Sen's L statistic, van der Waerden and Akritas & Brunners ATS. The type I error rates are computed for the uniform and the exponential distributions, both as continuous and in several variations as discrete distribution. The computations had been performed for balanced and unbalanced designs as well as for several effect models. The aim of this study is to analyze the impact of discrete distributions on the error rate. And it is shown that this scaling impact is restricted to the ART- as well as the combination of ART- and INT-method. There are two effects: first with increasing cell counts their error rates rise beyond any acceptable limit up to 20 percent and more. And secondly their rates rise when the number of distinct values of the dependent variable decreases. This behavior is more severe for underlying exponential distributions than for uniform distributions. Therefore there is a recommendation not to apply the ART if the mean cell frequencies exceed 10.  相似文献   

2.
In this paper, we extend the univariate control median test to the multivariate case. We apply the permutation principle for the null distribution function of the test statistic and obtain a conditionally nonparametric test procedure. Because of the amount of computational work involved in implementing the test, we consider the normal approximation. We prove the consistency and derive the asymptotic efficiency of our control median test relative to Puri and Sen's median test. Finally, we compare the power of our control median test with those of Hotelling's T2 test and Puri and Sen's median test through the simulations.  相似文献   

3.
It is common to test if there is an effect due to a treatment. The commonly used tests have the assumption that the observations differ in location, and that their variances are the same over the groups. Different variances can arise if the observations being analyzed are means of different numbers of observations on individuals or slopes of growth curves with missing data. This study is concerned with cases in which the unequal variances are known, or known to a constant of proportionality. It examines the performance of the ttest, the Mann–Whitney–Wilcoxon Rank Sum test, the Median test, and the Van der Waerden test under these conditions. The t-test based on the weighted means is the likelihood ratio test under normality and has the usual optimality properties. The other tests are compared to it. One may align and scale the observations by subtracting the mean and dividing by the standard deviation of each point. This leads to other, analogous test statistics based on these adjusted observations. These statistics are also compared. Finally, the regression scores tests are compared to the other procedures.  相似文献   

4.
Heterogeneity of variances of treatment groups influences the validity and power of significance tests of location in two distinct ways. First, if sample sizes are unequal, the Type I error rate and power are depressed if a larger variance is associated with a larger sample size, and elevated if a larger variance is associated with a smaller sample size. This well-established effect, which occurs in t and F tests, and to a lesser degree in nonparametric rank tests, results from unequal contributions of pooled estimates of error variance in the computation of test statistics. It is observed in samples from normal distributions, as well as non-normal distributions of various shapes. Second, transformation of scores from skewed distributions with unequal variances to ranks produces differences in the means of the ranks assigned to the respective groups, even if the means of the initial groups are equal, and a subsequent inflation of Type I error rates and power. This effect occurs for all sample sizes, equal and unequal. For the t test, the discrepancy diminishes, and for the Wilcoxon–Mann–Whitney test, it becomes larger, as sample size increases. The Welch separate-variance t test overcomes the first effect but not the second. Because of interaction of these separate effects, the validity and power of both parametric and nonparametric tests performed on samples of any size from unknown distributions with possibly unequal variances can be distorted in unpredictable ways.  相似文献   

5.
This study examined the influence of heterogeneity of variance on Type I error rates and power of the independent-samples Student's t-test of equality of means on samples of scores from normal and 10 non-normal distributions. The same test of equality of means was performed on corresponding rank-transformed scores. For many non-normal distributions, both versions produced anomalous power functions, resulting partly from the fact that the hypothesis test was biased, so that under some conditions, the probability of rejecting H 0 decreased as the difference between means increased. In all cases where bias occurred, the t-test on ranks exhibited substantially greater bias than the t-test on scores. This anomalous result was independent of the more familiar changes in Type I error rates and power attributable to unequal sample sizes combined with unequal variances.  相似文献   

6.
The parametric and nonparametric methods for estimating the error rates in linear discriminant analysis are examined both in normal and in nonnormal situations. A Monte Carlo experiment was carried out under the assumption that two population distributions were characterized by a mixture of two multivariate normal distributions. The bootstrap bias-corrected apparent error rate compares favourably to other available estimators for nonnormal populations with small Mahalanobis distance. The methods for error estimation are also applied to a practical problem in medical diagnosis  相似文献   

7.
We consider the two-sample t-test where error variances are unknown but with known relationships between them. This situation arises, for example, when two measuring instruments average different number of replicates to report the response. In particular we compare our procedure with the usual Satterthwaite approximation in the two sample t-test with variances unequal. Our procedure uses the knowledge of a known ratio of variances while the Satterthwaite approximation assumes only that the two variances are unequal. Simulations show that our procedure has both better size and better power than the Satterthwaite approximation. Finally, we consider an extension of our results to the General Linear Model.  相似文献   

8.
SUMMARY For the c -sample location problem with equal and unequal variances, we compare the classical F -test and its robustified version-the Welch test-with some nonparametric counterparts defined for two-sided and one-sided ordered alternatives, such as trend and umbrella alternatives. A new rank test for long-tailed distributions is proposed. The comparison is referred to level alpha and power beta of the tests, and is carried out via Monte Carlo simulation, assuming short-, medium- and long-tailed as well as asymmetric distributions. It turns out that the Welch test is the best one in the case of unequal variances but in the case of equal variances special non-parametric tests are to prefer.  相似文献   

9.
Five estimation approaches have been developed to compute the confidence interval (CI) for the ratio of two lognormal means: (1) T, the CI based on the t-test procedure; (2) ML, a traditional maximum likelihood-based approach; (3) BT, a bootstrap approach; (4) R, the signed log-likelihood ratio statistic; and (5) R*, the modified signed log-likelihood ratio statistic. The purpose of this study was to assess the performance of these five approaches when applied to distributions other than lognormal distribution, for which they were derived. Performance was assessed in terms of average length and coverage probability of the CIs for each estimation approaches (i.e., T, ML, BT, R, and R*) when data followed a Weibull or gamma distribution. Four models were discussed in this study. In Model 1, the sample sizes and variances were equal within the two groups. In Model 2, the sample sizes were equal but variances were different within the two groups. In Model 3, the variances were different within the two groups and the larger variance was paired with the larger sample size. In Model 4, the variances were different within the two groups and the larger variance was paired with the smaller sample size. The results showed that when the variances of the two groups were equal, the t-test performed well, no matter what the underlying distribution was and how large the variances of the two groups were. The BT approach performed better than the others when the underlying distribution was not lognormal distribution, although it was inaccurate when the variances were large. The R* test did not perform well when the underlying distribution was Weibull or gamma distributed data, but it performed best when the data followed a lognormal distribution.  相似文献   

10.
In this article, we study the power of one-sample location tests under classical distributions and two supermodels which include the normal distribution as a special case. The distributions of the supermodels are chosen in such a way that they have equal distance to the normal as the logistic, uniform, double exponential, and the Cauchy, respectively. As a measure of distance we use the Lévy metric. The tests considered are two parametric tests, the t-test and a trimmed t-test, and two nonparametric tests, the sign test and the Wilcoxon signed-rank tests. It turns out that the power of the tests, first of all, does not depend on the Lévy distance but on the special chosen supermodel.  相似文献   

11.
The empirical likelihood (EL) technique has been well addressed in both the theoretical and applied literature in the context of powerful nonparametric statistical methods for testing and interval estimations. A nonparametric version of Wilks theorem (Wilks, 1938 Wilks , S. S. ( 1938 ). The large-sample distribution of the likelihood ratio for testing composite hypotheses . Annals of Mathematical Statistics 9 : 6062 .[Crossref] [Google Scholar]) can usually provide an asymptotic evaluation of the Type I error of EL ratio-type tests. In this article, we examine the performance of this asymptotic result when the EL is based on finite samples that are from various distributions. In the context of the Type I error control, we show that the classical EL procedure and the Student's t-test have asymptotically a similar structure. Thus, we conclude that modifications of t-type tests can be adopted to improve the EL ratio test. We propose the application of the Chen (1995 Chen , L. ( 1995 ). Testing the mean of skewed distributions . Journal of the American Statistical Association 90 : 767772 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) t-test modification to the EL ratio test. We display that the Chen approach leads to a location change of observed data whereas the classical Bartlett method is known to be a scale correction of the data distribution. Finally, we modify the EL ratio test via both the Chen and Bartlett corrections. We support our argument with theoretical proofs as well as a Monte Carlo study. A real data example studies the proposed approach in practice.  相似文献   

12.
A class of simultaneous tests based on the aligned rank transform (ART) statistics is proposed for linear functions of parameters in linear models. The asymptotic distributions are derived. The stability of the finite sample behaviour of the sampling distribution of the ART technique is studied by comparing the simulated upper quantiles of its sampling distribution with those of the multivariate t-distribution. Simulation also shows that the tests based on ART have excellent small sample properties and because of their robustness perform better than the methods based on the least-squares estimates.  相似文献   

13.
Many robust tests for the equality of variances have been proposed recently. Brown and Forsythe (1974) and Layard (1973) review some of the well-known procedures and compare them by simulation methods. Brown and Forsythe’s alternative formulation of Levene’s test statistic is found to be quite robust under certain nonnormal distributions. The performance of the methods, however, suffers in the presence of heavy tailed distributions such as the Cauchy distribution.

In this paper, we propose and study a simple robust test. The results obtained from the Monte Carlo study compare favorably with those of the existing procedures.  相似文献   

14.
《Econometric Reviews》2013,32(4):325-340
Abstract

Nonnested models are sometimes tested using a simulated reference distribution for the uncentred log likelihood ratio statistic. This approach has been recommended for the specific problem of testing linear and logarithmic regression models. The general asymptotic validity of the reference distribution test under correct choice of error distributions is questioned. The asymptotic behaviour of the test under incorrect assumptions about error distributions is also examined. In order to complement these analyses, Monte Carlo results for the case of linear and logarithmic regression models are provided. The finite sample properties of several standard tests for testing these alternative functional forms are also studied, under normal and nonnormal error distributions. These regression-based variable-addition tests are implemented using asymptotic and bootstrap critical values.  相似文献   

15.
In this paper, we propose a nonparametric method based on jackknife empirical likelihood ratio to test the equality of two variances. The asymptotic distribution of the test statistic has been shown to follow χ2 distribution with the degree of freedom 1. Simulations have been conducted to show the type I error and the power compared to Levene's test and F test under different distribution settings. The proposed method has been applied to a real data set to illustrate the testing procedure.  相似文献   

16.
In this paper, we study the bioequivalence (BE) inference problem motivated by pharmacokinetic data that were collected using the serial sampling technique. In serial sampling designs, subjects are independently assigned to one of the two drugs; each subject can be sampled only once, and data are collected at K distinct timepoints from multiple subjects. We consider design and hypothesis testing for the parameter of interest: the area under the concentration–time curve (AUC). Decision rules in demonstrating BE were established using an equivalence test for either the ratio or logarithmic difference of two AUCs. The proposed t-test can deal with cases where two AUCs have unequal variances. To control for the type I error rate, the involved degrees-of-freedom were adjusted using Satterthwaite's approximation. A power formula was derived to allow the determination of necessary sample sizes. Simulation results show that, when the two AUCs have unequal variances, the type I error rate is better controlled by the proposed method compared with a method that only handles equal variances. We also propose an unequal subject allocation method that improves the power relative to that of the equal and symmetric allocation. The methods are illustrated using practical examples.  相似文献   

17.
This study examines the effects of calibration errors on model assumptions and data-analytic tools in direct calibration assays. These effects encompass induced dependencies, inflated variances, and heteroscedasticity among the calibrated measurements, whose distributions arise as mixtures. These anomalies adversely affect conventional inferences, including the inconsistency of sample means; the underestimation of measurement variance; and the distributions of sample means, sample variances, and student's t as mixtures. Inferences in comparative experiments remain largely intact, although error mean squares continue to underestimate the measurement variances. These anomalies are masked in practice, as conventional diagnostics cannot discern the irregularities induced through calibration. Case studies illustrate the principal issues.  相似文献   

18.
In this article, the least squares (LS) estimates of the parameters of periodic autoregressive (PAR) models are investigated for various distributions of error terms via Monte-Carlo simulation. Beside the Gaussian distribution, this study covers the exponential, gamma, student-t, and Cauchy distributions. The estimates are compared for various distributions via bias and MSE criterion. The effect of other factors are also examined as the non-constancy of model orders, the non-constancy of the variances of seasonal white noise, the period length, and the length of the time series. The simulation results indicate that this method is in general robust for the estimation of AR parameters with respect to the distribution of error terms and other factors. However, the estimates of those parameters were, in some cases, noticeably poor for Cauchy distribution. It is also noticed that the variances of estimates of white noise variances are highly affected by the degree of skewness of the distribution of error terms.  相似文献   

19.
The authors consider a finite population ρ = {(Yk, xk), k = 1,…,N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxiliary variable X for their nonparametric estimation. They describe a method of the Chambers‐Dunstan type for estimation of the distribution of {Yk, k = 1,…, N} from a sample drawn from without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by “plugging‐in” the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.  相似文献   

20.
In this paper, we investigate different procedures for testing the equality of two mean survival times in paired lifetime studies. We consider Owen’s M-test and Q-test, a likelihood ratio test, the paired t-test, the Wilcoxon signed rank test and a permutation test based on log-transformed survival times in the comparative study. We also consider the paired t-test, the Wilcoxon signed rank test and a permutation test based on original survival times for the sake of comparison. The size and power characteristics of these tests are studied by means of Monte Carlo simulations under a frailty Weibull model. For less skewed marginal distributions, the Wilcoxon signed rank test based on original survival times is found to be desirable. Otherwise, the M-test and the likelihood ratio test are the best choices in terms of power. In general, one can choose a test procedure based on information about the correlation between the two survival times and the skewness of the marginal survival distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号