首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we focus on the one-sided hypothesis testing for the univariate linear calibration, where a normally distributed response variable and an explanatory variable are involved. The observations of the response variable corresponding to known values of the explanatory variable are used to make inferences on a single unknown value of the explanatory variable. We apply the generalized inference to the calibration problem, and take the generalized p-value as the test statistic to develop a new p-value for one-sided hypothesis testing, which we refer to as the one-sided posterior predictive p-value. The behavior of the one-sided posterior predictive p-value is numerically compared with that of the generalized p-value, and simulations show that the proposed p-value is quite satisfactory in the frequentist performance.  相似文献   

2.
In this article, we introduce two goodness-of-fit tests for testing normality through the concept of the posterior predictive p-value. The discrepancy variables selected are the Kolmogorov-Smirnov (KS) and Berk-Jones (BJ) statistics and the prior chosen is Jeffreys’ prior. The constructed posterior predictive p-values are shown to be distributed independently of the unknown parameters under the null hypothesis, thus they can be taken as the test statistics. It emerges from the simulation that the new tests are more powerful than the corresponding classical tests against most of the alternatives concerned.  相似文献   

3.
P-values are useful statistical measures of evidence against a null hypothesis. In contrast to other statistical estimates, however, their sample-to-sample variability is usually not considered or estimated, and therefore not fully appreciated. Via a systematic study of log-scale p-value standard errors, bootstrap prediction bounds, and reproducibility probabilities for future replicate p-values, we show that p-values exhibit surprisingly large variability in typical data situations. In addition to providing context to discussions about the failure of statistical results to replicate, our findings shed light on the relative value of exact p-values vis-a-vis approximate p-values, and indicate that the use of *, **, and *** to denote levels 0.05, 0.01, and 0.001 of statistical significance in subject-matter journals is about the right level of precision for reporting p-values when judged by widely accepted rules for rounding statistical estimates.  相似文献   

4.
This article considers the problem of testing marginal homogeneity in a 2 × 2 contingency table. We first review some well-known conditional and unconditional p-values appeared in the statistical literature. Then we treat the p-value as the test statistic and use the unconditional approach to obtain the modified p-value, which is shown to be valid. For a given nominal level, the rejection region of the modified p-value test contains that of the original p-value test. Some nice properties of the modified p-value are given. Especially, under mild conditions the rejection region of the modified p-value test is shown to be the Barnard convex set as described by Barnard (1947 Barnard , G. A. ( 1947 ). Significance tests for 2 × 2 tables . Biometrika 34 : 123138 .[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). If the one-sided null hypothesis has two nuisance parameters, we show that this result can reduce the dimension of the nuisance parameter space from two to one for computing modified p-values and sizes of tests. Numerical studies including an illustrative example are given. Numerical comparisons show that the sizes of the modified p-value tests are closer to a nominal level than those of the original p-value tests for many cases, especially in the case of small to moderate sample sizes.  相似文献   

5.
In multiple hypothesis test, an important problem is estimating the proportion of true null hypotheses. Existing methods are mainly based on the p-values of the single tests. In this paper, we propose two new estimations for this proportion. One is a natural extension of the commonly used methods based on p-values and the other is based on a mixed distribution. Simulations show that the first method is comparable with existing methods and performs better under some cases. And the method based on a mixed distribution can get accurate estimators even if the variance of data is large or the difference between the null hypothesis and alternative hypothesis is very small.  相似文献   

6.
ABSTRACT

When the editors of Basic and Applied Social Psychology effectively banned the use of null hypothesis significance testing (NHST) from articles published in their journal, it set off a fire-storm of discussions both supporting the decision and defending the utility of NHST in scientific research. At the heart of NHST is the p-value which is the probability of obtaining an effect equal to or more extreme than the one observed in the sample data, given the null hypothesis and other model assumptions. Although this is conceptually different from the probability of the null hypothesis being true, given the sample, p-values nonetheless can provide evidential information, toward making an inference about a parameter. Applying a 10,000-case simulation described in this article, the authors found that p-values’ inferential signals to either reject or not reject a null hypothesis about the mean (α?=?0.05) were consistent for almost 70% of the cases with the parameter’s true location for the sampled-from population. Success increases if a hybrid decision criterion, minimum effect size plus p-value (MESP), is used. Here, rejecting the null also requires the difference of the observed statistic from the exact null to be meaningfully large or practically significant, in the researcher’s judgment and experience. The simulation compares performances of several methods: from p-value and/or effect size-based, to confidence-interval based, under various conditions of true location of the mean, test power, and comparative sizes of the meaningful distance and population variability. For any inference procedure that outputs a binary indicator, like flagging whether a p-value is significant, the output of one single experiment is not sufficient evidence for a definitive conclusion. Yet, if a tool like MESP generates a relatively reliable signal and is used knowledgeably as part of a research process, it can provide useful information.  相似文献   

7.
Abstract

Micheas and Dey (2003 Micheas , A. C. , Dey , D. K. ( 2003 ). Prior and posterior predictive p -values in the one-sided location parameter testing problem. Sankhya¯ 65 : 158178 . [Google Scholar]) reconciled classical and Bayesian p-values in the one-sided location parameter testing problem. In this article, the classical p-value is reconciled with the prior predictive p-value, for the two-sided location parameter testing problem, proving that the classical p-value coincides with the infimum of prior predictive p-values when the prior ranges in different classes of priors.  相似文献   

8.
The classical unconditional exact p-value test can be used to compare two multinomial distributions with small samples. This general hypothesis requires parameter estimation under the null which makes the test severely conservative. Similar property has been observed for Fisher's exact test with Barnard and Boschloo providing distinct adjustments that produce more powerful testing approaches. In this study, we develop a novel adjustment for the conservativeness of the unconditional multinomial exact p-value test that produces nominal type I error rate and increased power in comparison to all alternative approaches. We used a large simulation study to empirically estimate the 5th percentiles of the distributions of the p-values of the exact test over a range of scenarios and implemented a regression model to predict the values for two-sample multinomial settings. Our results show that the new test is uniformly more powerful than Fisher's, Barnard's, and Boschloo's tests with gains in power as large as several hundred percent in certain scenarios. Lastly, we provide a real-life data example where the unadjusted unconditional exact test wrongly fails to reject the null hypothesis and the corrected unconditional exact test rejects the null appropriately.  相似文献   

9.
ABSTRACT

Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? p-Values themselves do not directly answer this question and are often misinterpreted in ways that lead to overstating the evidence against the null hypothesis. Even in the “post p?<?0.05 era,” however, it is quite possible that p-values will continue to be widely reported and used to assess the strength of evidence (if for no other reason than the widespread availability and use of statistical software that routinely produces p-values and thereby implicitly advocates for their use). If so, the potential for misinterpretation will persist. In this article, we recommend three practices that would help researchers more accurately interpret p-values. Each of the three recommended practices involves interpreting p-values in light of their corresponding “Bayes factor bound,” which is the largest odds in favor of the alternative hypothesis relative to the null hypothesis that is consistent with the observed data. The Bayes factor bound generally indicates that a given p-value provides weaker evidence against the null hypothesis than typically assumed. We therefore believe that our recommendations can guard against some of the most harmful p-value misinterpretations. In research communities that are deeply attached to reliance on “p?<?0.05,” our recommendations will serve as initial steps away from this attachment. We emphasize that our recommendations are intended merely as initial, temporary steps and that many further steps will need to be taken to reach the ultimate destination: a holistic interpretation of statistical evidence that fully conforms to the principles laid out in the ASA statement on statistical significance and p-values.  相似文献   

10.
In this article, the problem of testing the equality of coefficients of variation in a multivariate normal population is considered, and an asymptotic approach and a generalized p-value approach based on the concepts of generalized test variable are proposed. Monte Carlo simulation studies show that the proposed generalized p-value test has good empirical sizes, and it is better than the asymptotic approach. In addition, the problem of hypothesis testing and confidence interval for the common coefficient variation of a multivariate normal population are considered, and a generalized p-value and a generalized confidence interval are proposed. Using Monte Carlo simulation, we find that the coverage probabilities and expected lengths of this generalized confidence interval are satisfactory, and the empirical sizes of the generalized p-value are close to nominal level. We illustrate our approaches using a real data.  相似文献   

11.
We consider the one-way ANOVA problem of testing the equality of several normal means when the variances are not assumed to be equal. This is a generalization of the Behrens-Fisher problem, but even in this special case there is no exact test and the actual size of any test depends on the values of the nuisance parameters. Therefore, controlling the actual size of the test is of main concern. In this article, we first consider a test using the concept of generalized p-value. Extensive simulation studies show that the actual size of this test does not exceed the nominal level, for practically all values of the nuisance parameters, but the test is not too conservative either, in the sense that the actual size of the test can be very close to the nominal level for some values of the nuisance parameters. We then use this test to propose a simple F-test, which has similar properties but avoids the computations associated with generalized p-values. Because of its simplicity, both conceptually as well as computationally, this F-test may be more useful in practice, since one-way ANOVA is widely used by practitioners who may not be familiar with the generalized p-value and its computational aspects.  相似文献   

12.
The mid-p is defined as the sum of the probabilities of all outcomes more extreme than an observed value, plus half of the probabilities of all outcomes exactly as extreme. On the one hand, it offers greater power than the standard p-value, but on the other, tests based on the mid-p statistic may have greater Type I error than their nominal level. This article investigates the mid p-value's properties under the estimated truth paradigm, which views p-values as estimators of the truth. The mid-p is shown to minimize the maximum risk for one-sided and two-sided tests.  相似文献   

13.
There are two distinct definitions of “P-value” for evaluating a proposed hypothesis or model for the process generating an observed dataset. The original definition starts with a measure of the divergence of the dataset from what was expected under the model, such as a sum of squares or a deviance statistic. A P-value is then the ordinal location of the measure in a reference distribution computed from the model and the data, and is treated as a unit-scaled index of compatibility between the data and the model. In the other definition, a P-value is a random variable on the unit interval whose realizations can be compared to a cutoff α to generate a decision rule with known error rates under the model and specific alternatives. It is commonly assumed that realizations of such decision P-values always correspond to divergence P-values. But this need not be so: Decision P-values can violate intuitive single-sample coherence criteria where divergence P-values do not. It is thus argued that divergence and decision P-values should be carefully distinguished in teaching, and that divergence P-values are the relevant choice when the analysis goal is to summarize evidence rather than implement a decision rule.  相似文献   

14.
ABSTRACT

This article has two objectives. The first and narrower is to formalize the p-value function, which records all possible p-values, each corresponding to a value for whatever the scalar parameter of interest is for the problem at hand, and to show how this p-value function directly provides full inference information for any corresponding user or scientist. The p-value function provides familiar inference objects: significance levels, confidence intervals, critical values for fixed-level tests, and the power function at all values of the parameter of interest. It thus gives an immediate accurate and visual summary of inference information for the parameter of interest. We show that the p-value function of the key scalar interest parameter records the statistical position of the observed data relative to that parameter, and we then describe an accurate approximation to that p-value function which is readily constructed.  相似文献   

15.
Abstract

The hypothesis tests of performance measures for an M/Ek/1 queueing system are considered. With pivotal models deduced from sufficient statistics for the unknown parameters, a generalized p-value approach to derive tests about parametric functions are proposed. The focus is on derivation of the p-values of hypothesis testing for five popular performance measures of the system in the steady state. Given a sample T, let p(T) be the p values we developed. We derive a closed form expression to show that, for small samples, the probability P(p(T) ? γ) is approximately equal to γ, for 0 ? γ ? 1.  相似文献   

16.
We revisit the problem of estimating the proportion π of true null hypotheses where a large scale of parallel hypothesis tests are performed independently. While the proportion is a quantity of interest in its own right in applications, the problem has arisen in assessing or controlling an overall false discovery rate. On the basis of a Bayes interpretation of the problem, the marginal distribution of the p-value is modeled in a mixture of the uniform distribution (null) and a non-uniform distribution (alternative), so that the parameter π of interest is characterized as the mixing proportion of the uniform component on the mixture. In this article, a nonparametric exponential mixture model is proposed to fit the p-values. As an alternative approach to the convex decreasing mixture model, the exponential mixture model has the advantages of identifiability, flexibility, and regularity. A computation algorithm is developed. The new approach is applied to a leukemia gene expression data set where multiple significance tests over 3,051 genes are performed. The new estimate for π with the leukemia gene expression data appears to be about 10% lower than the other three estimates that are known to be conservative. Simulation results also show that the new estimate is usually lower and has smaller bias than the other three estimates.  相似文献   

17.
A Bayesian test for the point null testing problem in the multivariate case is developed. A procedure to get the mixed distribution using the prior density is suggested. For comparisons between the Bayesian and classical approaches, lower bounds on posterior probabilities of the null hypothesis, over some reasonable classes of prior distributions, are computed and compared with the p-value of the classical test. With our procedure, a better approximation is obtained because the p-value is in the range of the Bayesian measures of evidence.  相似文献   

18.
ABSTRACT

We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm—and the p-value thresholds intrinsic to it—as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to “ban” p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly.  相似文献   

19.
ABSTRACT

Various approaches can be used to construct a model from a null distribution and a test statistic. I prove that one such approach, originating with D. R. Cox, has the property that the p-value is never greater than the Generalized Likelihood Ratio (GLR). When combined with the general result that the GLR is never greater than any Bayes factor, we conclude that, under Cox’s model, the p-value is never greater than any Bayes factor. I also provide a generalization, illustrations for the canonical Normal model, and an alternative approach based on sufficiency. This result is relevant for the ongoing discussion about the evidential value of small p-values, and the movement among statisticians to “redefine statistical significance.”  相似文献   

20.
This article proposes a modified p-value for the two-sided test of the location of the normal distribution when the parameter space is restricted. A commonly used test for the two-sided test of the normal distribution is the uniformly most powerful unbiased (UMPU) test, which is also the likelihood ratio test. The p-value of the test is used as evidence against the null hypothesis. Note that the usual p-value does not depend on the parameter space but only on the observation and the assumption of the null hypothesis. When the parameter space is known to be restricted, the usual p-value cannot sufficiently utilize this information to make a more accurate decision. In this paper, a modified p-value (also called the rp-value) dependent on the parameter space is proposed, and the test derived from the modified p-value is also shown to be the UMPU test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号