首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose a restricted Liu regression estimator (RLRE) for estimating the parameter vector, β, in the presence of multicollinearity, when the dependent variable is binary and it is suspected that β may belong to a linear subspace defined by ?=?r. First, we investigate the mean squared error (MSE) properties of the new estimator and compare them with those of the restricted maximum likelihood estimator (RMLE). Then we suggest some estimators of the shrinkage parameter, and a simulation study is conducted to compare the performance of the different estimators. Finally, we show the benefit of using RLRE instead of RMLE when estimating how changes in price affect consumer demand for a specific product.  相似文献   

2.
Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.  相似文献   

3.
In the logistic regression model, the variance of the maximum likelihood estimator is inflated and unstable when the multicollinearity exists in the data. There are several methods available in literature to overcome this problem. We propose a new stochastic restricted biased estimator. We study the statistical properties of the proposed estimator and compare its performance with some existing estimators in the sense of scalar mean squared criterion. An example and a simulation study are provided to illustrate the performance of the proposed estimator.KEYWORDS: Logistic regression, maximum likelihood estimator, mean squared error matrix, ridge regression, simulation study, stochastic restricted estimatorMathematics Subject Classifications: Primary 62J05, Secondary 62J07  相似文献   

4.
Concerning the estimation of linear parameters in small areas, a nested-error regression model is assumed for the values of the target variable in the units of a finite population. Then, a bootstrap procedure is proposed for estimating the mean squared error (MSE) of the EBLUP under the finite population setup. The consistency of the bootstrap procedure is studied, and a simulation experiment is carried out in order to compare the performance of two different bootstrap estimators with the approximation given by Prasad and Rao [Prasad, N.G.N. and Rao, J.N.K., 1990, The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85, 163–171.]. In the numerical results, one of the bootstrap estimators shows a better bias behavior than the Prasad–Rao approximation for some of the small areas and not much worse in any case. Further, it shows less MSE in situations of moderate heteroscedasticity and under mispecification of the error distribution as normal when the true distribution is logistic or Gumbel. The proposed bootstrap method can be applied to more general types of parameters (linear of not) and predictors.  相似文献   

5.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

6.
In this paper, we analytically derive the exact formula for the mean squared error (MSE) of two weighted average (WA) estimators for each individual regression coefficient. Further, we execute numerical evaluations to investigate small sample properties of the WA estimators, and compare the MSE performance of the WA estimators with the other shrinkage estimators and the usual OLS estimator. Our numerical results show that (1) the WA estimators have smaller MSE than the other shrinkage estimators and the OLS estimator over a wide region of parameter space; (2) the range where the relative MSE of the WA estimator is smaller than that of the OLS estimator gets narrower as the number of explanatory variables k increases.  相似文献   

7.
《统计学通讯:理论与方法》2012,41(13-14):2437-2444
We propose a new approach to estimate the parameters of the Cox proportional hazards model in the presence of collinearity. Generally, a maximum partial likelihood estimator is used to estimate parameters for the Cox proportional hazards model. However, the maximum partial likelihood estimators can be seriously affected by the presence of collinearity since the parameter estimates result in large variances.

In this study, we develop a Liu-type estimator for Cox proportional hazards model parameters and compare it with a ridge regression estimator based on the scalar mean squared error (MSE). Finally, we evaluate its performance through a simulation study.  相似文献   

8.
The exact mean-squared error (MSE) of estimators of the variance in nonparametric regression based on quadratic forms is investigated. In particular, two classes of estimators are compared: Hall, Kay and Titterington's optimal difference-based estimators and a class of ordinary difference-based estimators which generalize methods proposed by Rice and Gasser, Sroka and Jennen-Steinmetz. For small sample sizes the MSE of the first estimator is essentially increased by the magnitude of the integrated first two squared derivatives of the regression function. It is shown that in many situations ordinary difference-based estimators are more appropriate for estimating the variance, because they control the bias much better and hence have a much better overall performance. It is also demonstrated that Rice's estimator does not always behave well. Data-driven guidelines are given to select the estimator with the smallest MSE.  相似文献   

9.
Under some nonstochastic linear restrictions based on either additional information or prior knowledge in a semiparametric regression model, a family of feasible generalized robust estimators for the regression parameter is proposed. The least trimmed squares (LTS) method proposed by Rousseeuw as a highly robust regression estimator is a statistical technique for fitting a regression model based on the subset of h observations (out of n) whose least-square fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h squared residuals. For practical purpose, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced. Then, we develop an algorithm for the LTS estimator based on feasible methods. Through the Monte Carlo simulation studies and a real data example, performance of the feasible type of robust estimators is compared with the classical ones in restricted semiparametric regression models.  相似文献   

10.
In this paper, the restricted almost unbiased ridge regression estimator and restricted almost unbiased Liu estimator are introduced for the vector of parameters in a multiple linear regression model with linear restrictions. The bias, variance matrices and mean square error (MSE) of the proposed estimators are derived and compared. It is shown that the proposed estimators will have smaller quadratic bias but larger variance than the corresponding competitors in literatures. However, they will respectively outperform the latter according to the MSE criterion under certain conditions. Finally, a simulation study and a numerical example are given to illustrate some of the theoretical results.  相似文献   

11.
This paper develops alternatives to maximum likelihood estimators (MLE) for logistic regression models and compares the mean squared error (MSE) of the estimators. The MLE for the vector of underlying success probabilities has low MSE only when the true probabilities are extreme (i.e., near 0 or 1). Extreme probabilities correspond to logistic regression parameter vectors which are large in norm. A competing “restricted” MLE and an empirical version of it are suggested as estimators with better performance than the MLE for central probabilities. An approximate EM-algorithm for estimating the restriction is described. As in the case of normal theory ridge estimators, the proposed estimators are shown to be formally derivable by Bayes and empirical Bayes arguments. The small sample operating characteristics of the proposed estimators are compared to the MLE via a simulation study; both the estimation of individual probabilities and of logistic parameters are considered.  相似文献   

12.
The maximum likelihood (ML) method is used to estimate the unknown Gamma regression (GR) coefficients. In the presence of multicollinearity, the variance of the ML method becomes overstated and the inference based on the ML method may not be trustworthy. To combat multicollinearity, the Liu estimator has been used. In this estimator, estimation of the Liu parameter d is an important problem. A few estimation methods are available in the literature for estimating such a parameter. This study has considered some of these methods and also proposed some new methods for estimation of the d. The Monte Carlo simulation study has been conducted to assess the performance of the proposed methods where the mean squared error (MSE) is considered as a performance criterion. Based on the Monte Carlo simulation and application results, it is shown that the Liu estimator is always superior to the ML and recommendation about which best Liu parameter should be used in the Liu estimator for the GR model is given.  相似文献   

13.
The zero-inflated Poisson regression model is commonly used when analyzing economic data that come in the form of non-negative integers since it accounts for excess zeros and overdispersion of the dependent variable. However, a problem often encountered when analyzing economic data that has not been addressed for this model is multicollinearity. This paper proposes ridge regression (RR) estimators and some methods for estimating the ridge parameter k for a non-negative model. A simulation study has been conducted to compare the performance of the estimators. Both mean squared error and mean absolute error are considered as the performance criteria. The simulation study shows that some estimators are better than the commonly used maximum-likelihood estimator and some other RR estimators. Based on the simulation study and an empirical application, some useful estimators are recommended for practitioners.  相似文献   

14.
In this paper we consider the double k-class estimator which incorporates the Stein variance estimator. This estimator is called the SVKK estimator. We derive the explicit formula for the mean squared error (MSE) of the SVKK estimator for each individual regression coefficient. It is shown analytically that the MSE performance of the Stein-rule estimator for each individual regression coefficient can be improved by utilizing the Stein variance estimator. Also, MSE’s of several estimators included in a family of the SVKK estimators are compared by numerical evaluations.  相似文献   

15.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

16.
Kupper and Meydrech and Myers and Lahoda introduced the mean squared error (MSE) approach to study response surface designs, Duncan and DeGroot derived a criterion for optimality of linear experimental designs based on minimum mean squared error. However, minimization of the MSE of an estimator maxr renuire some knowledge about the unknown parameters. Without such knowledge construction of designs optimal in the sense of MSE may not be possible. In this article a simple method of selecting the levels of regressor variables suitable for estimating some functions of the parameters of a lognormal regression model is developed using a criterion for optimality based on the variance of an estimator. For some special parametric functions, the criterion used here is equivalent to the criterion of minimizing the mean squared error. It is found that the maximum likelihood estimators of a class of parametric functions can be improved substantially (in the sense of MSE) by proper choice of the values of regressor variables. Moreover, our approach is applicable to analysis of variance as well as regression designs.  相似文献   

17.
Using survey weights, You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] proposed a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator of a small area mean under a nested error linear regression model. This estimator borrows strength across areas through a linking model, and makes use of survey weights to ensure design consistency and preserve benchmarking property in the sense that the estimators add up to a reliable direct estimator of the mean of a large area covering the small areas. In this article, a second‐order approximation to the mean squared error (MSE) of the pseudo‐EBLUP estimator of a small area mean is derived. Using this approximation, an estimator of MSE that is nearly unbiased is derived; the MSE estimator of You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] ignored cross‐product terms in the MSE and hence it is biased. Empirical results on the performance of the proposed MSE estimator are also presented. The Canadian Journal of Statistics 38: 598–608; 2010 © 2010 Statistical Society of Canada  相似文献   

18.
In this paper, we introduce two kinds of new restricted estimators called restricted modified Liu estimator and restricted modified ridge estimator based on prior information for the vector of parameters in a linear regression model with linear restrictions. Furthermore, the performance of the proposed estimators in mean squares error matrix sense is derived and compared. Finally, a numerical example and a Monte Carlo simulation are given to illustrate some of the theoretical results.  相似文献   

19.
In this paper, a new power transformation estimator of population mean in the presence of non-response has been suggested. The estimator of mean obtained from proposed technique remains better than the estimators obtained from ratio or mean methods of imputation. The mean squared error of the resultant estimator is less than that of the estimator obtained on the basis of ratio method of imputation for the optinum choice of parameters. An estimator for estimating a parameter involved in the process of new method of imputation has been discussed. The MSE expressions for the proposed estimators have been derived analytically and compared empirically. Product method of imputation for negatively correlated variables has also been introduced. The work has been extended to the case of multi-auxiliary information to be used for imputation.  相似文献   

20.
Abstract

This article introduces some Liu parameters in the linear regression model based on the work of Shukur, Månsson, and Sjölander. These methods of estimating the Liu parameter d increase the efficiency of Liu estimator. The comparison of proposed Liu parameters and available methods has done using Monte Carlo simulation and a real data set where the mean squared error, mean absolute error and interval estimation are considered as performance criterions. The simulation study shows that under certain conditions the proposed Liu parameters perform quite well as compared to the ordinary least squares estimator and other existing Liu parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号