首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

2.
In this paper, a generalized difference-based estimator is introduced for the vector parameter β in the semiparametric regression model when the errors are correlated. A generalized difference-based Liu estimator is defined for the vector parameter β in the semiparametric regression model. Under the linear nonstochastic constraint Rβ=r, the generalized restricted difference-based Liu estimator is given. The risk function for the β?GRD(η) associated with weighted balanced loss function is presented. The performance of the proposed estimators is evaluated by a simulated data set.  相似文献   

3.
4.
In this article, we introduce a new class of estimators called the sK type principal components estimators to combat multicollinearity, which include the principal components regression (PCR) estimator, the rk estimator and the sK estimator as special cases. Necessary and sufficient conditions for the superiority of the new estimator over the PCR estimator, the rk estimator and the sK estimator are derived in the sense of the mean squared error matrix criterion. A Monte Carlo simulation study and a numerical example are given to illustrate the performance of the proposed estimator.  相似文献   

5.
In this paper, we develop a semiparametric regression model for longitudinal skewed data. In the new model, we allow the transformation function and the baseline function to be unknown. The proposed model can provide a much broader class of models than the existing additive and multiplicative models. Our estimators for regression parameters, transformation function and baseline function are asymptotically normal. Particularly, the estimator for the transformation function converges to its true value at the rate n ? 1 ∕ 2, the convergence rate that one could expect for a parametric model. In simulation studies, we demonstrate that the proposed semiparametric method is robust with little loss of efficiency. Finally, we apply the new method to a study on longitudinal health care costs.  相似文献   

6.
In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter β when it is subjected to lie in the linear subspace restriction Hβ = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers.  相似文献   

7.
Consider a linear regression model with some relevant regressors are unobservable. In such a situation, we estimate the model by using the proxy variables as regressors or by simply omitting the relevant regressors. In this paper, we derive the explicit formula of predictive mean squared error (PMSE) of a general family of shrinkage estimators of regression coefficients. It is shown analytically that the positive-part shrinkage estimator dominates the ordinary shrinkage estimator even when proxy variables are used in place of the unobserved variables. Also, as an example, our result is applied to the double k-class estimator proposed by Ullah and Ullah (Double k-class estimators of coefficients in linear regression. Econometrica. 1978;46:705–722). Our numerical results show that the positive-part double k-class estimator with proxy variables has preferable PMSE performance.  相似文献   

8.
This article is concerned with efficient estimation in a semiparametric model. We consider pseudo maximum likelihood estimation and prove that the proposed estimator is asymptotically efficient in the sense of Cramér; that is, the estimator has the smallest mean squared error.  相似文献   

9.
10.
In the context of ridge regression, the estimation of shrinkage parameter plays an important role in analyzing data. Many efforts have been put to develop the computation of risk function in different full-parametric ridge regression approaches using eigenvalues and then bringing an efficient estimator of shrinkage parameter based on them. In this respect, the estimation of shrinkage parameter is neglected for semiparametric regression model. Not restricted, but the main focus of this approach is to develop necessary tools for computing the risk function of regression coefficient based on the eigenvalues of design matrix in semiparametric regression. For this purpose the differencing methodology is applied. We also propose a new estimator for shrinkage parameter which is of harmonic type mean of ridge estimators. It is shown that this estimator performs better than all the existing ones for the regression coefficient. For our proposal, a Monte Carlo simulation study and a real dataset analysis related to housing attributes are conducted to illustrate the efficiency of shrinkage estimators based on the minimum risk and mean squared error criteria.  相似文献   

11.
A novel method is proposed for choosing the tuning parameter associated with a family of robust estimators. It consists of minimising estimated mean squared error, an approach that requires pilot estimation of model parameters. The method is explored for the family of minimum distance estimators proposed by [Basu, A., Harris, I.R., Hjort, N.L. and Jones, M.C., 1998, Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, 549–559.] Our preference in that context is for a version of the method using the L 2 distance estimator [Scott, D.W., 2001, Parametric statistical modeling by minimum integrated squared error. Technometrics, 43, 274–285.] as pilot estimator.  相似文献   

12.
In this paper, we analytically derive the exact formula for the mean squared error (MSE) of two weighted average (WA) estimators for each individual regression coefficient. Further, we execute numerical evaluations to investigate small sample properties of the WA estimators, and compare the MSE performance of the WA estimators with the other shrinkage estimators and the usual OLS estimator. Our numerical results show that (1) the WA estimators have smaller MSE than the other shrinkage estimators and the OLS estimator over a wide region of parameter space; (2) the range where the relative MSE of the WA estimator is smaller than that of the OLS estimator gets narrower as the number of explanatory variables k increases.  相似文献   

13.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

14.
We consider a random regression model with several-fold change-points. The results for one change-point are generalized. The maximum likelihood estimator of the parameters is shown to be consistent, and the asymptotic distribution for the estimators of the coefficients is shown to be Gaussian. The estimators of the change-points converge, with n ?1 rate, to the vector whose components are the left end points of the maximizing interval with respect to each change-point. The likelihood process is asymptotically equivalent to the sum of independent compound Poisson processes.  相似文献   

15.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

16.
This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.  相似文献   

17.
ABSTRACT

In this paper, assuming that there exist omitted variables in the specified model, we analytically derive the exact formula for the mean squared error (MSE) of a heterogeneous pre-test (HPT) estimator whose components are the ordinary least squares (OLS) and feasible ridge regression (FRR) estimators. Since we cannot examine the MSE performance analytically, we execute numerical evaluations to investigate small sample properties of the HPT estimator, and compare the MSE performance of the HPT estimator with those of the FRR estimator and the usual OLS estimator. Our numerical results show that (1) the HPT estimator is more efficient when the model misspecification is severe; (2) the HPT estimator with the optimal critical value obtained under the correctly specified model can be safely used even when there exist omitted variables in the specified model.  相似文献   

18.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

19.
We propose a robust regression method called regression with outlier shrinkage (ROS) for the traditional n>pn>p cases. It improves over the other robust regression methods such as least trimmed squares (LTS) in the sense that it can achieve maximum breakdown value and full asymptotic efficiency simultaneously. Moreover, its computational complexity is no more than that of LTS. We also propose a sparse estimator, called sparse regression with outlier shrinkage (SROS), for robust variable selection and estimation. It is proven that SROS can not only give consistent selection but also estimate the nonzero coefficients with full asymptotic efficiency under the normal model. In addition, we introduce a concept of nearly regression equivariant estimator for understanding the breakdown properties of sparse estimators, and prove that SROS achieves the maximum breakdown value of nearly regression equivariant estimators. Numerical examples are presented to illustrate our methods.  相似文献   

20.
We consider the semiparametric proportional hazards model for the cause-specific hazard function in analysis of competing risks data with missing cause of failure. The inverse probability weighted equation and augmented inverse probability weighted equation are proposed for estimating the regression parameters in the model, and their theoretical properties are established for inference. Simulation studies demonstrate that the augmented inverse probability weighted estimator is doubly robust and the proposed method is appropriate for practical use. The simulations also compare the proposed estimators with the multiple imputation estimator of Lu and Tsiatis (2001). The application of the proposed method is illustrated using data from a bone marrow transplant study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号