首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We introduce a new family of distributions suitable for fitting positive data sets with high kurtosis which is called the Slashed Generalized Rayleigh Distribution. This distribution arises as the quotient of two independent random variables, one being a generalized Rayleigh distribution in the numerator and the other a power of the uniform distribution in the denominator. We present properties and carry out estimation of the model parameters by moment and maximum likelihood (ML) methods. Finally, we conduct a small simulation study to evaluate the performance of ML estimators and analyze real data sets to illustrate the usefulness of the new model.  相似文献   

2.
Abstract

In this article, we introduce a new distribution for modeling positive data sets with high kurtosis, the modified slashed generalized exponential distribution. The new model can be seen as a modified version of the slashed generalized exponential distribution. It arises as a quotient of two independent random variables, one being a generalized exponential distribution in the numerator and a power of the exponential distribution in the denominator. We studied various structural properties (such as the stochastic representation, density function, hazard rate function and moments) and discuss moment and maximum likelihood estimating approaches. Two real data sets are considered in which the utility of the new model in the analysis with high kurtosis is illustrated.  相似文献   

3.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

4.
Abstract

In this article a generalization of the modified slash distribution is introduced. This model is based on the quotient of two independent random variables, whose distributions are a normal and a one-parameter gamma, respectively. The resulting distribution is a new model whose kurtosis is greater than other slash distributions. The probability density function, its properties, moments, and kurtosis coefficient are obtained. Inference based on moment and maximum likelihood methods is carried out. The multivariate version is also introduced. Two real data sets are considered in which it is shown that the new model fits better to symmetric data with heavy tails than other slash extensions previously introduced in literature.  相似文献   

5.
The inverted generalized exponential distribution is defined as an alternative model for lifetime data. The existence of moments of this distribution is shown to hold under some restrictions. However, all the moments exist for the truncated inverted generalized exponential distribution and closed-form expressions for them are derived in this article. The distributional properties of this truncated distribution are studied. Maximum likelihood estimation method is discussed for the estimation of the parameters of the distribution both theoretically and empirically. In order to see the modeling performance of the distribution, two real datasets are analyzed.  相似文献   

6.
The generalized exponential distribution proposed by Gupta and Kundu [Gupta, R.D and Kundu, D., 1999, Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173–188.] is an important lifetime distribution in survival analysis. In this paper, we consider the maximum likelihood estimation procedure of the parameters of the generalized exponential distribution when the data are left censored. We obtain the maximum likelihood estimators of the unknown para-meters and the Fisher information matrix. Simulation studies are carried out to observe the performance of the estimators in small sample.  相似文献   

7.
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied.  相似文献   

8.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

9.
In this paper, we consider the maximum likelihood estimator (MLE) of the scale parameter of the generalized exponential (GE) distribution based on a random censoring model. We assume the censoring distribution also follows a GE distribution. Since the estimator does not provide an explicit solution, we propose a simple method of deriving an explicit estimator by approximating the likelihood function. In order to compare the performance of the estimators, Monte Carlo simulation is conducted. The results show that the MLE and the approximate MLE are almost identical in terms of bias and variance.  相似文献   

10.
The generalized exponential is the most commonly used distribution for analyzing lifetime data. This distribution has several desirable properties and it can be used quite effectively to analyse several skewed life time data. The main aim of this paper is to introduce absolutely continuous bivariate generalized exponential distribution using the method of Block and Basu (1974). In fact, the Block and Basu exponential distribution will be extended to the generalized exponential distribution. We call the new proposed model as the Block and Basu bivariate generalized exponential distribution, then, discuss its different properties. In this case the joint probability distribution function and the joint cumulative distribution function can be expressed in compact forms. The model has four unknown parameters and the maximum likelihood estimators cannot be obtained in explicit form. To compute the maximum likelihood estimators directly, one needs to solve a four dimensional optimization problem. The EM algorithm has been proposed to compute the maximum likelihood estimations of the unknown parameters. One data analysis is provided for illustrative purposes. Finally, we propose some generalizations of the proposed model and compare their models with each other.  相似文献   

11.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

12.
This article mainly considers interval estimation of the scale and shape parameters of the generalized exponential (GE) distribution. We adopt the generalized fiducial method to construct a kind of new confidence intervals for the parameters of interest and compare them with the frequentist and Bayesian methods. In addition, we give the comparison of the point estimation based on the frequentist, generalized fiducial and Bayesian methods. Simulation results show that a new procedure based on generalized fiducial inference is more applicable than the non-fiducial methods for the point and interval estimation of the GE distribution. Finally, two lifetime data sets are used to illustrate the application of our new procedure.  相似文献   

13.
The two-parameter generalized exponential distribution has been used recently quite extensively to analyze lifetime data. In this paper the two-parameter generalized exponential distribution has been embedded in a larger class of distributions obtained by introducing another shape parameter. Because of the additional shape parameter, more flexibility has been introduced in the family. It is observed that the new family is positively skewed, and has increasing, decreasing, unimodal and bathtub shaped hazard functions. It can be observed as a proportional reversed hazard family of distributions. This new family of distributions is analytically quite tractable and it can be used quite effectively to analyze censored data also. Analyses of two data sets are performed and the results are quite satisfactory.  相似文献   

14.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

15.
In this paper, based on an adaptive Type-II progressively censored sample from the generalized exponential distribution, the maximum likelihood and Bayesian estimators are derived for the unknown parameters as well as the reliability and hazard functions. Also, the approximate confidence intervals of the unknown parameters, and the reliability and hazard functions are calculated. Markov chain Monte Carlo method is applied to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. Moreover, results from simulation studies assessing the performance of our proposed method are included. Finally, an illustrative example using real data set is presented for illustrating all the inferential procedures developed here.  相似文献   

16.
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.  相似文献   

17.
In this paper, recurrence relations for single and product moments of generalized order statistics (gOSs) from linear exponential distribution (LE) are derived and characterizations of this distribution based on the conditional moments of the gOSs are given.  相似文献   

18.
Generalized exponential, geometric extreme exponential and Weibull distributions are three non-negative skewed distributions that are suitable for analysing lifetime data. We present diagnostic tools based on the likelihood ratio test (LRT) and the minimum Kolmogorov distance (KD) method to discriminate between these models. Probability of correct selection has been calculated for each model and for several combinations of shape parameters and sample sizes using Monte Carlo simulation. Application of LRT and KD discrimination methods to some real data sets has also been studied.  相似文献   

19.
A three-parameter extension of the exponential distribution is introduced and studied in this paper. The new distribution is quite flexible and can be used effectively in modelling survival data, reliability problems, fatigue life studies and hydrological data. It can have constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing–increasing–decreasing hazard rate functions. We provide a comprehensive account of the mathematical properties of the new distribution and various structural quantities are derived. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. An empirical application of the new model to real data is presented for illustrative purposes. We hope that the new distribution will serve as an alternative model to other models available in the literature for modelling real data in many areas.  相似文献   

20.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号