首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Theoretical considerations of kurtosis, whether of partial orderings of distributions with respect to kurtosis or of measures of kurtosis, have tended to focus only on symmetric distributions. With reference to historical points and recent work on skewness and kurtosis, this paper defines anti-skewness and uses it as a tool to discuss the concept of kurtosis in asymmetric univariate distributions. The discussion indicates that while kurtosis is best considered as a property of symmetrised versions of distributions, symmetrisation does not simply remove skewness. Skewness, anti-skewness and kurtosis are all inter-related aspects of shape. The Tukey g and h family and the Johnson Su family are considered as examples.  相似文献   

2.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

3.
Tukey proposed a class of distributions, the g-and-h family (gh family), based on a transformation of a standard normal variable to accommodate different skewness and elongation in the distribution of variables arising in practical applications. It is easy to draw values from this distribution even though it is hard to explicitly state the probability density function. Given this flexibility, the gh family may be extremely useful in creating multiple imputations for missing data. This article demonstrates how this family, as well as its generalizations, can be used in the multiple imputation analysis of incomplete data. The focus of this article is on a scalar variable with missing values. In the absence of any additional information, data are missing completely at random, and hence the correct analysis is the complete-case analysis. Thus, the application of the gh multiple imputation to the scalar cases affords comparison with the correct analysis and with other model-based multiple imputation methods. Comparisons are made using simulated datasets and the data from a survey of adolescents ascertaining driving after drinking alcohol.  相似文献   

4.
Summary: The H–family of distributions or H–distributions, introduced by Tukey (1960; 1977), are generated by a single transformation of the standard normal distribution and allow for leptokurtosis represented by the parameter h. Alternatively, Haynes et al. (1997) generated leptokurtic distributions by applying the K–transformation to the normal distribution. In this study we propose a third transformation, the so–called J–transformation, and derive some properties of this transformation. Moreover, so-called elongation generating functions (EGFs) are introduced. By means of EGFs we are able to visualize the strength of tail elongation and to construct new transformations. Finally, we compare the three transformations towards their goodness–of–fit in the context of financial return data.  相似文献   

5.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

6.
A new class of distributions, including the MacGillivray adaptation of the g-and-h distributions and a new family called the g-and-k distributions, may be used to approximate a wide class of distributions, with the advantage of effectively controlling skewness and kurtosis through independent parameters. This separation can be used to advantage in the assessment of robustness to non-normality in frequentist ranking and selection rules. We consider the rule of selecting the largest of several means with some specified confidence. In general, we find that the frequentist selection rule is only robust to small changes in the distributional shape parameters g and k and depends on the amount of flexibility we allow in the specified confidence. This flexibility is exemplified through a quality control example in which a subset of batches of electrical transformers are selected as the most efficient with a specified confidence, based on the sample mean performance level for each batch.  相似文献   

7.
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.  相似文献   

8.
It is assumed that k(k?>?2) independent samples of sizes n i (i?=?1, …, k) are available from k lognormal distributions. Four hypothesis cases (H 1H 4) are defined. Under H 1, all k median parameters as well as all k skewness parameters are equal; under H 2, all k skewness parameters are equal but not all k median parameters are equal; under H 3, all k median parameters are equal but not all k skewness parameters are equal; under H 4, neither the k median parameters nor the k skewness parameters are equal. The Expectation Maximization (EM) algorithm is used to obtain the maximum likelihood (ML) estimates of the lognormal parameters in each of these four hypothesis cases. A (2k???1) degree polynomial is solved at each step of the EM algorithm for the H 3 case. A two-stage procedure for testing the equality of the medians either under skewness homogeneity or under skewness heterogeneity is also proposed and discussed. A simulation study was performed for the case k?=?3.  相似文献   

9.
Consider an inhomogeneous Poisson process X on [0, T] whose unk-nown intensity function “switches” from a lower function g* to an upper function h* at some unknown point ?* that has to be identified. We consider two known continuous functions g and h such that g*(t) ? g(t) < h(t) ? h*(t) for 0 ? t ? T. We describe the behavior of the generalized likelihood ratio and Wald’s tests constructed on the basis of a misspecified model in the asymptotics of large samples. The power functions are studied under local alternatives and compared numerically with help of simulations. We also show the following robustness result: the Type I error rate is preserved even though a misspecified model is used to construct tests.  相似文献   

10.
Polygonal distributions are a class of distributions that can be defined via the mixture of triangular distributions over the unit interval. We demonstrate that the densities of polygonal distributions are dense in the class of continuous and concave densities with bounded second derivatives. Furthermore, we prove that polygonal density functions provide O(g? 2) approximations (where g is the number of triangular distribution components), in the supremum distance, to any density function from the hypothesized class. Parametric consistency and Hellinger consistency results for the maximum likelihood (ML) estimator are obtained. A result regarding model selection via penalized ML estimation is proved.  相似文献   

11.
The size of the two-sample t test is generally thought to be robust against nonnormal distributions if the sample sizes are large. This belief is based on central limit theory, and asymptotic expansions of the moments of the t statistic suggest that robustness may be improved for moderate sample sizes if the variance, skewness, and kurtosis of the distributions are matched, particularly if the sample sizes are also equal.

It is shown that asymptotic arguments such as these can be misleading and that, in fact, the size of the t test can be as large as unity if the distributions are allowed to be completely arbitrary. Restricting the distributions to be identical or symmetric (but otherwise arbitrary) does not guarantee that the size can be controlled either, but controlling the tail-heaviness of the distributions does. The last result is proved more generally for the k-sample F test.  相似文献   

12.
Abstract

Examining the robustness properties of maximum likelihood (ML) estimators of parameters in exponential power and generalized t distributions has been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in these distributions are studied. The ML estimators for location, scale and scale variant (skewness) parameters are represented as an iterative reweighting algorithm (IRA) to compute the estimates of these parameters simultaneously. The artificial data are generated to examine performance of IRA for ML estimators of parameters simultaneously. We make a comparison between these two distributions to test the fitting performance on real data sets. The goodness of fit test and information criteria approve that robustness and fitting performance should be considered together as a key for modeling issue to have the best information from real data sets.  相似文献   

13.
In this study, we consider different sampling designs of ranked set sampling (RSS) and give empirical distribution function (EDF) estimators for each sampling designs. We provide comparative graphs for the EDFs. Using these EDFs, power of five goodness-of-fit tests are obtained by Monte Carlo simulations for Tukey's gh distributions under RSS and simple random sampling (SRS). Performances of these tests are compared with the tests based on the SRS. Also, critical values belong to these tests are obtained for different set and cycle sizes.  相似文献   

14.
Traditional parametric and nonparametric regression techniques encounter serious over smoothing problems when jump point discontinuities exist in the underlying mean function. Recently, Chu, Glad, Godtliebsen and Marron (1998) developed a method using a modified M-smoothing technique to preserve jumps and spikes while producing a smooth estimate of the mean function. The performance of Chu etal.'s (1998) method is quite sensitive to the choice of the required bandwidths g and h. Furthermore, it is not obvious how to extend certain commonly used automatic bandwidth selection procedures when jumps and spikes are present. In this paper we propose a rule of thumb method of choosing the smoothing parameters based on asymptotic optimal bandwidth formulas and robust estimates of unknown quantities. We also evaluate the proposed bandwidth selection method via a small simulation study.  相似文献   

15.
In this article, the least squares (LS) estimates of the parameters of periodic autoregressive (PAR) models are investigated for various distributions of error terms via Monte-Carlo simulation. Beside the Gaussian distribution, this study covers the exponential, gamma, student-t, and Cauchy distributions. The estimates are compared for various distributions via bias and MSE criterion. The effect of other factors are also examined as the non-constancy of model orders, the non-constancy of the variances of seasonal white noise, the period length, and the length of the time series. The simulation results indicate that this method is in general robust for the estimation of AR parameters with respect to the distribution of error terms and other factors. However, the estimates of those parameters were, in some cases, noticeably poor for Cauchy distribution. It is also noticed that the variances of estimates of white noise variances are highly affected by the degree of skewness of the distribution of error terms.  相似文献   

16.
In this paper we give an asymptotic formula of order n ?1/2, where n is the sample size, for the skewness of the distribution of the maximum likelihood estimates of the linear parameters in generalized linear models. The formula is given in matrix notation and is very suitable for computer implementation. Several special cases are discussed. We also give asymptotic formulae for the skewness of the distribution of the maximum likelihood estimates of the dispersion and precision parameters.  相似文献   

17.
The present paper has as its objective an accurate quantification of the robustness of the two–sample t-test over an extensive practical range of distributions. The method is that of a major Monte Carlo study over the Pearson system of distributions and the details indicate that the results are quite accurate. The study was conducted over the range β 1 =0.0(0.4)2.0 (negative and positive skewness) and β 2 =1.4 (0.4)7.8 with equal sample sizes and for both the one-and two-tail t-tests. The significance level and power levels (for nominal values of 0.05, 0.50, and 0.95, respectively) were evaluated for each underlying distribution and for each sample size, with each probability evaluated from 100,000 generated values of the test-statistic. The results precisely quantify the degree of robustness inherent in the two-sample t-test and indicate to a user the degree of confidence one can have in this procedure over various regions of the Pearson system. The results indicate that the equal-sample size two-sample t-test is quite robust with respect to departures from normality, perhaps even more so than most people realize.  相似文献   

18.
This paper presents a robust mixture modeling framework using the multivariate skew t distributions, an extension of the multivariate Student’s t family with additional shape parameters to regulate skewness. The proposed model results in a very complicated likelihood. Two variants of Monte Carlo EM algorithms are developed to carry out maximum likelihood estimation of mixture parameters. In addition, we offer a general information-based method for obtaining the asymptotic covariance matrix of maximum likelihood estimates. Some practical issues including the selection of starting values as well as the stopping criterion are also discussed. The proposed methodology is applied to a subset of the Australian Institute of Sport data for illustration.  相似文献   

19.
In this article, we analyze issues of pooling models for a given set of N individual units observed over T periods of time. When the parameters of the models are different but exhibit some similarity, pooling may lead to a reduction of the mean squared error of the estimates and forecasts. We investigate theoretically and through simulations the conditions that lead to improved performance of forecasts based on pooled estimates. We show that the superiority of pooled forecasts in small samples can deteriorate as the sample size grows. Empirical results for postwar international real gross domestic product growth rates of 18 Organization for Economic Cooperation and Development countries using a model put forward by Garcia-Ferrer, Highfield, Palm, and Zellner and Hong, among others illustrate these findings. When allowing for contemporaneous residual correlation across countries, pooling restrictions and criteria have to be rejected when formally tested, but generalized least squares (GLS)-based pooled forecasts are found to outperform GLS-based individual and ordinary least squares-based pooled and individual forecasts.  相似文献   

20.
We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither ${\sqrt{n}}We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither ?n{\sqrt{n}}-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory parameter d. A direct consequence is that if data are long memory then testing normality with the Jarque–Bera test by using the chi-squared critical values is not valid. Therefore, statistical inference based on skewness, kurtosis, and the Jarque–Bera normality test, needs a rescaling of the corresponding statistics and computing new critical values of their nonstandard limiting distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号