首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

2.
In this paper we introduce a class of multivariate distributions, known as the generalized Liouville distribution and defined by the functional form (0 ≤xi < ∞, αi > 0, βi > 0, qi > 0). It is shown that such distributions can be used to derive both the Dirichlet distribution and the beta distribution of the second kind.  相似文献   

3.
The authors derive the null and non-null distributions of the test statistic v=ymin/ymax (where ymin= min xij, ymax= max xij, J=1,2, …, k) connected with testing the equality of scale parameters θ1, θ2, …θk in certain, class of density functions given by   相似文献   

4.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

5.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

6.
This article presents some structural properties of the inverse Gaussian distribution, together with several new characterizations based on constancy of regression of suitable functions on the sum of n independent identically distributed random variables. A decomposition of the statistic λσ (X?1i?X?1) into n - 1 independent chi-squared random variables, each with one degree of freedom, is given when n is of the form 2r.  相似文献   

7.
Abstract. Let {Zt}t 0 be a Lévy process with Lévy measure ν and let be a random clock, where g is a non‐negative function and is an ergodic diffusion independent of Z. Time‐changed Lévy models of the form are known to incorporate several important stylized features of asset prices, such as leptokurtic distributions and volatility clustering. In this article, we prove central limit theorems for a type of estimators of the integral parameter β(?):=∫?(x)ν(dx), valid when both the sampling frequency and the observation time‐horizon of the process get larger. Our results combine the long‐run ergodic properties of the diffusion process with the short‐term ergodic properties of the Lévy process Z via central limit theorems for martingale differences. The performance of the estimators are illustrated numerically for Normal Inverse Gaussian process Z and a Cox–Ingersoll–Ross process .  相似文献   

8.
Let X and Y be two arbitrary k-dimensional discrete random vectors, for k ≥ 1. We prove that there exists a coupling method which minimizes P( X ≠ Y ). This result is used to find the least upper bound for the metric d( X, Y ) = supA|P( X ∈ A ) ? P( Y ∈ A )| and to derive the inequality d(Σ X i, Σ Y i) ≤ Σd( X i, Y i). We thus obtain a unified method to measure the disparity between the distributions of sums of independent random vectors. Several examples are given.  相似文献   

9.
The existence of a component of variance for competition among sampling units or among individuals in a group was discussed by Yates and Zacopany in 1935. No procedure was suggested for estimating this component of variance. It is the purpose of this paper to give a procedure for estimating the component of variance due to competition and to apply the procedure to a set of data on weaning weights of pigs with 116 litters of various sizes and for Yorkshire, Chester-White, and Berkshire breeds. The first problem was to define litter size. Within this definition then, litters sizes of 3 to 14 pigs per litter were obtained. The variation among pigs within a litter of size h was considered to have an expected value equal to Vs+ Vch where Vs is the sampling variance component and Vch is the competition variance component for a litter of size h. In order to obtain an estimate of Vch, a polynomial relation between h and Vch was postulated. In particular, it was postulated that where E(.) denotes expected value. This form states that Vch goes to zero for one pig per litter; it may be appropriate as long as small litter sizes (say 1 and 2 at least) are omitted from the analysis as was done in the present instance. Using an iterative procedure of reestimating the weights at each stage, a form of weighted least squares analysis was performed. The procedure appears to converge after three to four steps of iteration. Solutions for some or all of the parameters Vp, Vs, β1 and β2 for h even, h odd, and all h = 3, 4, …, 14, were obtained using among litter mean squares, Ah, only, using within litter mean squares, Wh, only, and using both Ah, and Wh values. The Ah values for h = 3, 4, and 5 appeared to form a different group than for the other values of h. Both the Ah and Wh mean squares were from 56 day weights adjusted for birth weight. The maximum value of Vch for odd h, was nine whereas it was six for even h. Using all h the maximum value for Vch occurred when h was equal to nine. It appeared that expressing Vch as a quadratic function of litter size was satisfactory for these litter sizes and mean squares.  相似文献   

10.
Consider a given sequence {Tn} of estimators for a real-valued parameter θ. This paper studies asymptotic properties of restricted Bayes tests of the following form: reject H0:θ ≤ θ0 in favour of the alternative θ > θ0 if TnCn, where the critical point Cn is determined to minimize among all tests of this form the expected probability of error with respect to the prior distribution. Such tests may or may not be fully Bayes tests, and so are called Tn-Bayes. Under fairly broad conditions it is shown that and the Tn-Bayes risk where an is the order of the standard error of Tn, - is the prior density, and μ is the median of F, the limit distribution of (Tn – θ)/anb(θ). Several examples are given.  相似文献   

11.
Two processes of importance in statistics and probability are the empirical and partial-sum processes. Based on d-dimensional data X1, … Xa the empirical measure is defined for any ARd by the sample proportion of observations in A. When normalized, Fn yields the empirical process Wn: = n1/2 (Fn - F), where F denotes the “true” probability measure. To define partial-sum processes, one needs data that are assigned to specified locations (in contrast to the above, where specified unit masses are assigned to random locations). A suitable context for many applications is that of data attached to points of a lattice, say {Xj:j ϵ Jd} where J = {1, 2,…}, for which the partial sums are defined for any ARd by Thus S(A) is the sum of the data contained in A. When normalized, S yields the partial-sum process. This paper provides an overview of asymptotic results for empirical and partial-sum processes, including strong laws and central limit theorems, together with some indications of their inferential implications.  相似文献   

12.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

13.
The asymptotic distribution of the likelihood ratio under noncontiguous alternatives is shown to be normal for the exponential family of distributions. The rate of convergence of the parameters to the hypothetical value is specified where the asymptotic noncentral chi-square distribution no longer holds. It is only a little slower than $\O\left( {n^{ - \frac{1}{2}} } \right)$. The result provides compact power approximation formulae and is shown to work reasonably well even for moderate sample sizes.  相似文献   

14.
What is the interpretation of a confidence interval following estimation of a Box-Cox transformation parameter λ? Several authors have argued that confidence intervals for linear model parameters ψ can be constructed as if λ. were known in advance, rather than estimated, provided the estimand is interpreted conditionally given $\hat \lambda$. If the estimand is defined as $\psi \left( {\hat \lambda } \right)$, a function of the estimated transformation, can the nominal confidence level be regarded as a conditional coverage probability given $\hat \lambda$, where the interval is random and the estimand is fixed? Or should it be regarded as an unconditional probability, where both the interval and the estimand are random? This article investigates these questions via large-n approximations, small- σ approximations, and simulations. It is shown that, when model assumptions are satisfied and n is large, the nominal confidence level closely approximates the conditional coverage probability. When n is small, this conditional approximation is still good for regression models with small error variance. The conditional approximation can be poor for regression models with moderate error variance and single-factor ANOVA models with small to moderate error variance. In these situations the nominal confidence level still provides a good approximation for the unconditional coverage probability. This suggests that, while the estimand may be interpreted conditionally, the confidence level should sometimes be interpreted unconditionally.  相似文献   

15.
We consider the estimation of a location parameter θ in a one-sample problem. A measure of the asymptotic performance of an estimator sequence {Tn} = T is given by the exponential rate of convergence to zero of the tail probability, which for consistent estimator sequences is bounded by a constant, B (θ, ?), called the Bahadur bound. We consider two consistent estimators: the maximum-likelihood estimator (mle) and a consistent estimator based on a likelihood-ratio statistic, which we call the probability-ratio estimator (pre). In order to compare the local behaviour of these estimators, we obtain Taylor series expansions in ? for B (θ, ?) and the exponential rates of the mle and pre. Finally, some numerical work is presented in which we consider a variety of underlying distributions.  相似文献   

16.
Let f?n, h denote the kernel density estimate based on a sample of size n drawn from an unknown density f. Using techniques from L2 projection density estimators, the author shows how to construct a data-driven estimator f?n, h which satisfies This paper is inspired by work of Stone (1984), Devroye and Lugosi (1996) and Birge and Massart (1997).  相似文献   

17.
Abstract. The strong Rayleigh property is a new and robust negative dependence property that implies negative association; in fact it implies conditional negative association closed under external fields (CNA+). Suppose that and are two families of 0‐1 random variables that satisfy the strong Rayleigh property and let . We show that {Zi} conditioned on is also strongly Rayleigh; this turns out to be an easy consequence of the results on preservation of stability of polynomials of Borcea & Brändén (Invent. Math., 177, 2009, 521–569). This entails that a number of important π ps sampling algorithms, including Sampford sampling and Pareto sampling, are CNA+. As a consequence, statistics based on such samples automatically satisfy a version of the Central Limit Theorem for triangular arrays.  相似文献   

18.
Consider the process with, cf. (1.2) on page 265 in B1, X1, …, XN a sample from a distribution F and, for i = 1, …, N, R |x 1 , - q 1 ø| , the rank of |X1 - q1ø| among |X1 - q1ø|, …, |XN - qNø|. It is shown that, under certain regularity conditions on F and on the constants pi and qi, TøN(t) is asymptotically approximately a linear function of ø uniformly in t and in ø for |ø| ≤ C. The special case where the pi and the qi, are independent of i is considered.  相似文献   

19.
Consider two independent random samples of size f + 1 , one from an N (μ1, σ21) distribution and the other from an N (μ2, σ22) distribution, where σ2122∈ (0, ∞) . The Welch ‘approximate degrees of freedom’ (‘approximate t‐solution’) confidence interval for μ12 is commonly used when it cannot be guaranteed that σ2122= 1 . Kabaila (2005, Comm. Statist. Theory and Methods 34 , 291–302) multiplied the half‐width of this interval by a positive constant so that the resulting interval, denoted by J0, has minimum coverage probability 1 ?α. Now suppose that we have uncertain prior information that σ2122= 1. We consider a broad class of confidence intervals for μ12 with minimum coverage probability 1 ?α. This class includes the interval J0, which we use as the standard against which other members of will be judged. A confidence interval utilizes the prior information substantially better than J0 if (expected length of J)/(expected length of J0) is (a) substantially less than 1 (less than 0.96, say) for σ2122= 1 , and (b) not too much larger than 1 for all other values of σ2122 . For a given f, does there exist a confidence interval that satisfies these conditions? We focus on the question of whether condition (a) can be satisfied. For each given f, we compute a lower bound to the minimum over of (expected length of J)/(expected length of J0) when σ2122= 1 . For 1 ?α= 0.95 , this lower bound is not substantially less than 1. Thus, there does not exist any confidence interval belonging to that utilizes the prior information substantially better than J0.  相似文献   

20.
Abstract. Let M be an isotonic real‐valued function on a compact subset of and let be an unconstrained estimator of M. A feasible monotonizing technique is to take the largest (smallest) monotone function that lies below (above) the estimator or any convex combination of these two envelope estimators. When the process is asymptotically equicontinuous for some sequence rn→∞, we show that these projection‐type estimators are rn‐equivalent in probability to the original unrestricted estimator. Our first motivating application involves a monotone estimator of the conditional distribution function that has the distributional properties of the local linear regression estimator. Applications also include the estimation of econometric (probability‐weighted moment, quantile) and biometric (mean remaining lifetime) functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号