首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Quantile regression can provide more useful information on the conditional distribution of a response variable given covariates while classical regression provides informations on the conditional mean alone. In this paper, we propose a structured quantile estimation methodology in a nonparametric function estimation setup. Through the functional analysis of variance decomposition, the optimization of the proposed method can be solved using a series of quadratic and linear programmings. Our method automatically selects relevant covariates by adopting a lasso-type penalty. The performance of the proposed methodology is illustrated through numerical examples on both simulated and real data.  相似文献   

2.
We extend four tests common in classical regression – Wald, score, likelihood ratio and F tests – to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.  相似文献   

3.
Abstract.  Functional data analysis is a growing research field as more and more practical applications involve functional data. In this paper, we focus on the problem of regression and classification with functional predictors: the model suggested combines an efficient dimension reduction procedure [functional sliced inverse regression, first introduced by Ferré & Yao ( Statistics , 37, 2003 , 475)], for which we give a regularized version, with the accuracy of a neural network. Some consistency results are given and the method is successfully confronted to real-life data.  相似文献   

4.
In this paper, we propose a method to assess influence in skew-Birnbaum–Saunders regression models, which are an extension based on the skew-normal distribution of the usual Birnbaum–Saunders (BS) regression model. An interesting characteristic that the new regression model has is the capacity of predicting extreme percentiles, which is not possible with the BS model. In addition, since the observed likelihood function associated with the new regression model is more complex than that from the usual model, we facilitate the parameter estimation using a type-EM algorithm. Moreover, we employ influence diagnostic tools that considers this algorithm. Finally, a numerical illustration includes a brief simulation study and an analysis of real data in order to show the proposed methodology.  相似文献   

5.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology.  相似文献   

6.
Carbon dioxide is one of the major contributors to Global Warming. In the present study, we develop a differential equation to model the carbon dioxide emission data in the atmosphere using functional linear regression approach. In the proposed method, a differential operator is defined as data smoother and we use the penalized least square fitting criteria to smooth the data. The profile error sum of squares is optimized to estimate the differential operators using functional regression. The solution of the developed differential equation estimates and predicts the rate of change of carbon dioxide in the atmosphere at a particular time. We apply the proposed model to fit the emission of carbon dioxide data in the continental United States. Numerical simulations of a number of test cases depict a satisfactory agreement with real data.  相似文献   

7.
Regression methods typically construct a mapping from the covariates into the real numbers. Here, however, we consider regression problems where the task is to form a mapping from the covariates into a set of (univariate) real-valued functions. Examples are given by conditional density estimation, hazard regression and regression with a functional response. Our approach starts by modeling the function of interest using a sum of B-spline basis functions. To model dependence on the covariates, the coefficients of this expansion are each modeled as functions of the covariates. We propose to estimate these coefficient functions using boosted tree models. Algorithms are provided for the above three situations, and real data sets are used to investigate their performance. The results indicate that the proposed methodology performs well. In addition, it is both straightforward, and capable of handling a large number of covariates.  相似文献   

8.
We propose a multivariate functional response low‐rank regression model with possible high‐dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve bases, we reconstruct the basis coefficients as a matrix. To estimate these coefficients, we propose an efficient procedure using nuclear norm regularization. We also derive error bounds for our estimates and evaluate our method using simulations. We further apply our method to the Human Connectome Project neuroimaging data to predict cortical surface motor task‐evoked functional magnetic resonance imaging signals using various clinical covariates to illustrate the usefulness of our results.  相似文献   

9.
Abstract.  Mixed model based approaches for semiparametric regression have gained much interest in recent years, both in theory and application. They provide a unified and modular framework for penalized likelihood and closely related empirical Bayes inference. In this article, we develop mixed model methodology for a broad class of Cox-type hazard regression models where the usual linear predictor is generalized to a geoadditive predictor incorporating non-parametric terms for the (log-)baseline hazard rate, time-varying coefficients and non-linear effects of continuous covariates, a spatial component, and additional cluster-specific frailties. Non-linear and time-varying effects are modelled through penalized splines, while spatial components are treated as correlated random effects following either a Markov random field or a stationary Gaussian random field prior. Generalizing existing mixed model methodology, inference is derived using penalized likelihood for regression coefficients and (approximate) marginal likelihood for smoothing parameters. In a simulation we study the performance of the proposed method, in particular comparing it with its fully Bayesian counterpart using Markov chain Monte Carlo methodology, and complement the results by some asymptotic considerations. As an application, we analyse leukaemia survival data from northwest England.  相似文献   

10.
Shi, Wang, Murray-Smith and Titterington (Biometrics 63:714–723, 2007) proposed a Gaussian process functional regression (GPFR) model to model functional response curves with a set of functional covariates. Two main problems are addressed by their method: modelling nonlinear and nonparametric regression relationship and modelling covariance structure and mean structure simultaneously. The method gives very good results for curve fitting and prediction but side-steps the problem of heterogeneity. In this paper we present a new method for modelling functional data with ‘spatially’ indexed data, i.e., the heterogeneity is dependent on factors such as region and individual patient’s information. For data collected from different sources, we assume that the data corresponding to each curve (or batch) follows a Gaussian process functional regression model as a lower-level model, and introduce an allocation model for the latent indicator variables as a higher-level model. This higher-level model is dependent on the information related to each batch. This method takes advantage of both GPFR and mixture models and therefore improves the accuracy of predictions. The mixture model has also been used for curve clustering, but focusing on the problem of clustering functional relationships between response curve and covariates, i.e. the clustering is based on the surface shape of the functional response against the set of functional covariates. The model is examined on simulated data and real data.  相似文献   

11.
When studying associations between a functional covariate and scalar response using a functional linear model (FLM), scientific knowledge may indicate possible monotonicity of the unknown parameter curve. In this context, we propose an F-type test of monotonicity, based on a full versus reduced nested model structure, where the reduced model with monotonically constrained parameter curve is nested within an unconstrained FLM. For estimation under the unconstrained FLM, we consider two approaches: penalised least-squares and linear mixed model effects estimation. We use a smooth then monotonise approach to estimate the reduced model, within the null space of monotone parameter curves. A bootstrap procedure is used to simulate the null distribution of the test statistic. We present a simulation study of the power of the proposed test, and illustrate the test using data from a head and neck cancer study.  相似文献   

12.
Cross-validation has been widely used in the context of statistical linear models and multivariate data analysis. Recently, technological advancements give possibility of collecting new types of data that are in the form of curves. Statistical procedures for analysing these data, which are of infinite dimension, have been provided by functional data analysis. In functional linear regression, using statistical smoothing, estimation of slope and intercept parameters is generally based on functional principal components analysis (FPCA), that allows for finite-dimensional analysis of the problem. The estimators of the slope and intercept parameters in this context, proposed by Hall and Hosseini-Nasab [On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B: Stat. Methodol. 68 (2006), pp. 109–126], are based on FPCA, and depend on a smoothing parameter that can be chosen by cross-validation. The cross-validation criterion, given there, is time-consuming and hard to compute. In this work, we approximate this cross-validation criterion by such another criterion so that we can turn to a multivariate data analysis tool in some sense. Then, we evaluate its performance numerically. We also treat a real dataset, consisting of two variables; temperature and the amount of precipitation, and estimate the regression coefficients for the former variable in a model predicting the latter one.  相似文献   

13.
When functional data are not homogenous, for example, when there are multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this article, we propose a new estimation procedure for the mixture of Gaussian processes, to incorporate both functional and inhomogenous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from expectation-maximization (EM) algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset.  相似文献   

14.
ABSTRACT

M-estimation is a widely used technique for robust statistical inference. In this paper, we study robust partially functional linear regression model in which a scale response variable is explained by a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, we use polynomial splines to approximate the slop parameter. The estimation procedure is easy to implement, and it is resistant to heavy-tailederrors or outliers in the response. The asymptotic properties of the proposed estimators are established. Finally, we assess the finite sample performance of the proposed method by Monte Carlo simulation studies.  相似文献   

15.
This study considers the binary classification of functional data collected in the form of curves. In particular, we assume a situation in which the curves are highly mixed over the entire domain, so that the global discriminant analysis based on the entire domain is not effective. This study proposes an interval-based classification method for functional data: the informative intervals for classification are selected and used for separating the curves into two classes. The proposed method, called functional logistic regression with fused lasso penalty, combines the functional logistic regression as a classifier and the fused lasso for selecting discriminant segments. The proposed method automatically selects the most informative segments of functional data for classification by employing the fused lasso penalty and simultaneously classifies the data based on the selected segments using the functional logistic regression. The effectiveness of the proposed method is demonstrated with simulated and real data examples.  相似文献   

16.
Satellite remote-sensing is used to collect important atmospheric and geophysical data at various spatial resolutions, providing insight into spatiotemporal surface and climate variability globally. These observations are often plagued with missing spatial and temporal information of Earth''s surface due to (1) cloud cover at the time of a satellite passing and (2) infrequent passing of polar-orbiting satellites. While many methods are available to model missing data in space and time, in the case of land surface temperature (LST) from thermal infrared remote sensing, these approaches generally ignore the temporal pattern called the ‘diurnal cycle’ which physically constrains temperatures to peak in the early afternoon and reach a minimum at sunrise. In order to infill an LST dataset, we parameterize the diurnal cycle into a functional form with unknown spatiotemporal parameters. Using multiresolution spatial basis functions, we estimate these parameters from sparse satellite observations to reconstruct an LST field with continuous spatial and temporal distributions. These estimations may then be used to better inform scientists of spatiotemporal thermal patterns over relatively complex domains. The methodology is demonstrated using data collected by MODIS on NASA''s Aqua and Terra satellites over both Houston, TX and Phoenix, AZ USA.  相似文献   

17.
Recently, several methodologies to perform geostatistical analysis of functional data have been proposed. All of them assume that the spatial functional process considered is stationary. However, in practice, we often have nonstationary functional data because there exists an explicit spatial trend in the mean. Here, we propose a methodology to extend kriging predictors for functional data to the case where the mean function is not constant through the region of interest. We consider an approach based on the classical residual kriging method used in univariate geostatistics. We propose a three steps procedure. Initially, a functional regression model is used to detrend the mean. Then we apply kriging methods for functional data to the regression residuals to predict a residual curve at a non-data location. Finally, the prediction curve is obtained as the sum of the trend and the residual prediction. We apply the methodology to salinity data corresponding to 21 salinity curves recorded at the Ciénaga Grande de Santa Marta estuary, located in the Caribbean coast of Colombia. A cross-validation analysis was carried out to track the performance of the proposed methodology.  相似文献   

18.
The use of parametric linear mixed models and generalized linear mixed models to analyze longitudinal data collected during randomized control trials (RCT) is conventional. The application of these methods, however, is restricted due to various assumptions required by these models. When the number of observations per subject is sufficiently large, and individual trajectories are noisy, functional data analysis (FDA) methods serve as an alternative to parametric longitudinal data analysis techniques. However, the use of FDA in RCTs is rare. In this paper, the effectiveness of FDA and linear mixed models (LMMs) was compared by analyzing data from rural persons living with HIV and comorbid depression enrolled in a depression treatment randomized clinical trial. Interactive voice response systems were used for weekly administrations of the 10-item Self-Administered Depression Scale (SADS) over 41 weeks. Functional principal component analysis and functional regression analysis methods detected a statistically significant difference in SADS between telphone-administered interpersonal psychotherapy (tele-IPT) and controls but linear mixed effects model results did not. Additional simulation studies were conducted to compare FDA and LMMs under a different nonlinear trajectory assumption. In this clinical trial with sufficient per subject measured outcomes and individual trajectories that are noisy and nonlinear, we found FDA methods to be a better alternative to LMMs.  相似文献   

19.
Toxicologists and pharmacologists often describe toxicity of a chemical using parameters of a nonlinear regression model. Thus estimation of parameters of a nonlinear regression model is an important problem. The estimates of the parameters and their uncertainty estimates depend upon the underlying error variance structure in the model. Typically, a priori the researcher would not know if the error variances are homoscedastic (i.e., constant across dose) or if they are heteroscedastic (i.e., the variance is a function of dose). Motivated by this concern, in this paper we introduce an estimation procedure based on preliminary test which selects an appropriate estimation procedure accounting for the underlying error variance structure. Since outliers and influential observations are common in toxicological data, the proposed methodology uses M-estimators. The asymptotic properties of the preliminary test estimator are investigated; in particular its asymptotic covariance matrix is derived. The performance of the proposed estimator is compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using a data set obtained from the National Toxicology Program.  相似文献   

20.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号