首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In modern oncology drug development, adaptive designs have been proposed to identify the recommended phase 2 dose. The conventional dose finding designs focus on the identification of maximum tolerated dose (MTD). However, designs ignoring efficacy could put patients under risk by pushing to the MTD. Especially in immuno-oncology and cell therapy, the complex dose-toxicity and dose-efficacy relationships make such MTD driven designs more questionable. Additionally, it is not uncommon to have data available from other studies that target on similar mechanism of action and patient population. Due to the high variability from phase I trial, it is beneficial to borrow historical study information into the design when available. This will help to increase the model efficiency and accuracy and provide dose specific recommendation rules to avoid toxic dose level and increase the chance of patient allocation at potential efficacious dose levels. In this paper, we propose iBOIN-ET design that uses prior distribution extracted from historical studies to minimize the probability of decision error. The proposed design utilizes the concept of skeleton from both toxicity and efficacy data, coupled with prior effective sample size to control the amount of historical information to be incorporated. Extensive simulation studies across a variety of realistic settings are reported including a comparison of iBOIN-ET design to other model based and assisted approaches. The proposed novel design demonstrates the superior performances in percentage of selecting the correct optimal dose (OD), average number of patients allocated to the correct OD, and overdosing control during dose escalation process.  相似文献   

3.
In studies of combinations of agents in phase I oncology trials, the dose–toxicity relationship may not be monotone for all combinations, in which case the toxicity probabilities follow a partial order. The continual reassessment method for partial orders (PO‐CRM) is a design for phase I trials of combinations that leans upon identifying possible complete orders associated with the partial order. This article addresses some practical design considerations not previously undertaken when describing the PO‐CRM. We describe an approach in choosing a proper subset of possible orderings, formulated according to the known toxicity relationships within a matrix of combination therapies. Other design issues, such as working model selection and stopping rules, are also discussed. We demonstrate the practical ability of PO‐CRM as a phase I design for combinations through its use in a recent trial designed at the University of Virginia Cancer Center. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Designs for early phase dose finding clinical trials typically are either phase I based on toxicity, or phase I-II based on toxicity and efficacy. These designs rely on the implicit assumption that the dose of an experimental agent chosen using these short-term outcomes will maximize the agent's long-term therapeutic success rate. In many clinical settings, this assumption is not true. A dose selected in an early phase oncology trial may give suboptimal progression-free survival or overall survival time, often due to a high rate of relapse following response. To address this problem, a new family of Bayesian generalized phase I-II designs is proposed. First, a conventional phase I-II design based on short-term outcomes is used to identify a set of candidate doses, rather than selecting one dose. Additional patients then are randomized among the candidates, patients are followed for a predefined longer time period, and a final dose is selected to maximize the long-term therapeutic success rate, defined in terms of duration of response. Dose-specific sample sizes in the randomization are determined adaptively to obtain a desired level of selection reliability. The design was motivated by a phase I-II trial to find an optimal dose of natural killer cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies. A simulation study shows that, under a range of scenarios in the context of this trial, the proposed design has much better performance than two conventional phase I-II designs.  相似文献   

5.
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities.  相似文献   

6.
Recently, the US Food and Drug Administration Oncology Center of Excellence initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. The agency pointed out that the current paradigm for dose selection—based on the maximum tolerated dose (MTD)—is not sufficient for molecularly targeted therapies and immunotherapies, for which efficacy may not increase after the dose reaches a certain level. In these cases, it is more appropriate to identify the optimal biological dose (OBD) that optimizes the risk–benefit tradeoff of the drug. Project Optimus has spurred tremendous interest and urgent need for guidance on designing dose optimization trials. In this article, we review several representative dose optimization designs, including model-based and model-assisted designs, and compare their operating characteristics based on 10,000 randomly generated scenarios with various dose-toxicity and dose-efficacy curves and some fixed representative scenarios. The results show that, compared with model-based designs, model-assisted methods have advantages of easy-to-implement, robustness, and high accuracy to identify OBD. Some guidance is provided to help biostatisticians and clinicians to choose appropriate dose optimization methods in practice.  相似文献   

7.
This article proposes an extension of the continual reassessment method to determine the maximum tolerated dose (MTD) in the presence of patients' heterogeneity in phase I clinical trials. To start with a simple case, we consider the covariate as a binary variable representing two groups of patients. A logistic regression model is used to establish the dose–response relationship and the design is based on the Bayesian framework. Simulation studies for six plausible dose–response scenarios show that the proposed design is likely to determine the MTD more accurately than the design that does not take covariate into consideration.  相似文献   

8.
The main goal of phase I cancer clinical trials is to determine the highest dose of a new therapy associated with an acceptable level of toxicity for the use in a subsequent phase II trial. The continual reassessment method (CRM) [O’Quigley, J., Pepe, M., Fisher, L., 1990. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46, 33–48] and escalation with overdose control (EWOC) [Babb, J., Rogatko, A., Zacks, S., 1998. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statist. Med. 17 (10), 1103–1120] are two model-based designs used for phase I cancer clinical trials. A few modifications of the (original) CRM and EWOC have been made by many authors. In this paper, we show how CRM and EWOC can be unified and present a hybrid design. We study the characteristics of the approach of the hybrid design. The comparisons of the three designs (CRM, EWOC, and the hybrid design) are presented by convergence rates and overdose proportions. The simulation results show that the hybrid design generally has faster convergence rates than EWOC and smaller overdose proportions than CRM, especially when the true maximum tolerated dose (MTD) is above the mid-level of the dose range considered. The performance of these three designs is also evaluated in terms of sensitivity to outliers.  相似文献   

9.
In phase I trials, the main goal is to identify a maximum tolerated dose under an assumption of monotonicity in dose–response relationships. On the other hand, such monotonicity is no longer applied to biologic agents because a different mode of action from that of cytotoxic agents potentially draws unimodal or flat dose–efficacy curves. Therefore, biologic agents require an optimal dose that provides a sufficient efficacy rate under an acceptable toxicity rate instead of a maximum tolerated dose. Many trials incorporate both toxicity and efficacy data, and drugs with a variety of modes of actions are increasingly being developed; thus, optimal dose estimation designs have been receiving increased attention. Although numerous authors have introduced parametric model-based designs, it is not always appropriate to apply strong assumptions in dose–response relationships. We propose a new design based on a Bayesian optimization framework for identifying optimal doses for biologic agents in phase I/II trials. Our proposed design models dose–response relationships via nonparametric models utilizing a Gaussian process prior, and the uncertainty of estimates is considered in the dose selection process. We compared the operating characteristics of our proposed design against those of three other designs through simulation studies. These include an expansion of Bayesian optimal interval design, the parametric model-based EffTox design, and the isotonic design. In simulations, our proposed design performed well and provided results that were more stable than those from the other designs, in terms of the accuracy of optimal dose estimations and the percentage of correct recommendations.  相似文献   

10.
Designing Phase I clinical trials is challenging when accrual is slow or sample size is limited. The corresponding key question is: how to efficiently and reliably identify the maximum tolerated dose (MTD) using a sample size as small as possible? We propose model-assisted and model-based designs with adaptive intrapatient dose escalation (AIDE) to address this challenge. AIDE is adaptive in that the decision of conducting intrapatient dose escalation depends on both the patient's individual safety data, as well as other enrolled patient's safety data. When both data indicate reasonable safety, a patient may perform intrapatient dose escalation, generating toxicity data at more than one dose. This strategy not only provides patients the opportunity to receive higher potentially more effective doses, but also enables efficient statistical learning of the dose-toxicity profile of the treatment, which dramatically reduces the required sample size. Simulation studies show that the proposed designs are safe, robust, and efficient to identify the MTD with a sample size that is substantially smaller than conventional interpatient dose escalation designs. Practical considerations are provided and R code for implementing AIDE is available upon request.  相似文献   

11.
Phase I clinical trials aim to identify a maximum tolerated dose (MTD), the highest possible dose that does not cause an unacceptable amount of toxicity in the patients. In trials of combination therapies, however, many different dose combinations may have a similar probability of causing a dose‐limiting toxicity, and hence, a number of MTDs may exist. Furthermore, escalation strategies in combination trials are more complex, with possible escalation/de‐escalation of either or both drugs. This paper investigates the properties of two existing proposed Bayesian adaptive models for combination therapy dose‐escalation when a number of different escalation strategies are applied. We assess operating characteristics through a series of simulation studies and show that strategies that only allow ‘non‐diagonal’ moves in the escalation process (that is, both drugs cannot increase simultaneously) are inefficient and identify fewer MTDs for Phase II comparisons. Such strategies tend to escalate a single agent first while keeping the other agent fixed, which can be a severe restriction when exploring dose surfaces using a limited sample size. Meanwhile, escalation designs based on Bayesian D‐optimality allow more varied experimentation around the dose space and, consequently, are better at identifying more MTDs. We argue that for Phase I combination trials it is sensible to take forward a number of identified MTDs for Phase II experimentation so that their efficacy can be directly compared. Researchers, therefore, need to carefully consider the escalation strategy and model that best allows the identification of these MTDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   

13.
Model‐based dose‐finding methods for a combination therapy involving two agents in phase I oncology trials typically include four design aspects namely, size of the patient cohort, three‐parameter dose‐toxicity model, choice of start‐up rule, and whether or not to include a restriction on dose‐level skipping. The effect of each design aspect on the operating characteristics of the dose‐finding method has not been adequately studied. However, some studies compared the performance of rival dose‐finding methods using design aspects outlined by the original studies. In this study, we featured the well‐known four design aspects and evaluated the impact of each independent effect on the operating characteristics of the dose‐finding method including these aspects. We performed simulation studies to examine the effect of these design aspects on the determination of the true maximum tolerated dose combinations as well as exposure to unacceptable toxic dose combinations. The results demonstrated that the selection rates of maximum tolerated dose combinations and UTDCs vary depending on the patient cohort size and restrictions on dose‐level skipping However, the three‐parameter dose‐toxicity models and start‐up rules did not affect these parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Many phase I drug combination designs have been proposed to find the maximum tolerated combination (MTC). Due to the two‐dimension nature of drug combination trials, these designs typically require complicated statistical modeling and estimation, which limit their use in practice. In this article, we propose an easy‐to‐implement Bayesian phase I combination design, called Bayesian adaptive linearization method (BALM), to simplify the dose finding for drug combination trials. BALM takes the dimension reduction approach. It selects a subset of combinations, through a procedure called linearization, to convert the two‐dimensional dose matrix into a string of combinations that are fully ordered in toxicity. As a result, existing single‐agent dose‐finding methods can be directly used to find the MTC. In case that the selected linear path does not contain the MTC, a dose‐insertion procedure is performed to add new doses whose expected toxicity rate is equal to the target toxicity rate. Our simulation studies show that the proposed BALM design performs better than competing, more complicated combination designs.  相似文献   

15.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

16.
Phase I clinical trials are conducted in order to find the maximum tolerated dose (MTD) of a given drug from a finite set of doses. For ethical reasons, these studies are usually sequential, treating patients or groups of patients with the optimal dose according to the current knowledge, with the hope that this will lead to using the true MTD from some time on. However, the first result proved here is that this goal is infeasible, and that such designs, and, more generally, designs that concentrate on one dose from some time on, cannot provide consistent estimators for the MTD unless very strong parametric assumptions hold. Allowing some non-MTD treatment, we construct a randomized design that assigns the MTD with probability that approaches one as the size of the experiment goes to infinity and estimates the MTD consistently. We compare the suggested design with several methods by simulations, studying their performances in terms of correct estimation of the MTD and the proportion of individuals treated with the MTD.  相似文献   

17.
Compared with most of the existing phase I designs, the recently proposed calibration-free odds (CFO) design has been demonstrated to be robust, model-free, and easy to use in practice. However, the original CFO design cannot handle late-onset toxicities, which have been commonly encountered in phase I oncology dose-finding trials with targeted agents or immunotherapies. To account for late-onset outcomes, we extend the CFO design to its time-to-event (TITE) version, which inherits the calibration-free and model-free properties. One salient feature of CFO-type designs is to adopt game theory by competing three doses at a time, including the current dose and the two neighboring doses, while interval-based designs only use the data at the current dose and is thus less efficient. We conduct comprehensive numerical studies for the TITE-CFO design under both fixed and randomly generated scenarios. TITE-CFO shows robust and efficient performances compared with interval-based and model-based counterparts. As a conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alternatives for phase I trials when the toxicity outcome is late-onset.  相似文献   

18.
For phase I cancer clinical trials, toxicity is a major concern. Commonly, toxicity is categorized to five levels of severity. In addition to the traditional standard dose-escaiation design, the Continual Reassessment Method (CRM) provides a promising alternative to estimate the maximum tolerated dose of a drug. However, in both standard design (STD) and CRM, the severity level of toxicity on grade 3/4 of a previous patient's response would not be a differentiated factor for the next dose level assignment. In this study, we extend the procedure incorporating the idea of unequal weights on the assessments of grade 3 and grade 4 toxicity in the dose escalation. The simulation results show that the proposed extended procedures by taking the impact of grade 4 toxicity into account, both for STD and CRM, reduce the chance of recommendation to the higher dose levels. Similar trends are observed for patient allocation to the higher levels. Additionally, for CRM which performs more accurately on the estimation of maximum tolerated dose (MTD), the proposed extended CRM maintains the same characteristic.  相似文献   

19.
Incorporating historical data has a great potential to improve the efficiency of phase I clinical trials and to accelerate drug development. For model-based designs, such as the continuous reassessment method (CRM), this can be conveniently carried out by specifying a “skeleton,” that is, the prior estimate of dose limiting toxicity (DLT) probability at each dose. In contrast, little work has been done to incorporate historical data into model-assisted designs, such as the Bayesian optimal interval (BOIN), Keyboard, and modified toxicity probability interval (mTPI) designs. This has led to the misconception that model-assisted designs cannot incorporate prior information. In this paper, we propose a unified framework that allows for incorporating historical data into model-assisted designs. The proposed approach uses the well-established “skeleton” approach, combined with the concept of prior effective sample size, thus it is easy to understand and use. More importantly, our approach maintains the hallmark of model-assisted designs: simplicity—the dose escalation/de-escalation rule can be tabulated prior to the trial conduct. Extensive simulation studies show that the proposed method can effectively incorporate prior information to improve the operating characteristics of model-assisted designs, similarly to model-based designs.  相似文献   

20.
In recent years, seamless phase I/II clinical trials have drawn much attention, as they consider both toxicity and efficacy endpoints in finding an optimal dose (OD). Engaging an appropriate number of patients in a trial is a challenging task. This paper attempts a dynamic stopping rule to save resources in phase I/II trials. That is, the stopping rule aims to save patients from unnecessary toxic or subtherapeutic doses. We allow a trial to stop early when widths of the confidence intervals for the dose-response parameters become narrower or when the sample size is equal to a predefined size, whichever comes first. The simulation study of dose-response scenarios in various settings demonstrates that the proposed stopping rule can engage an appropriate number of patients. Therefore, we suggest its use in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号