首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generalized exponential distribution has been used quite effectively to model positively skewed lifetime data as an alternative to the well known Weibull or gamma distributions. In this paper we introduce an absolute continuous bivariate generalized exponential distribution by using a simple transformation from a well known bivariate exchangeable distribution. The marginal distributions of the proposed bivariate generalized exponential distributions are generalized exponential distributions. The joint probability density function and the joint cumulative distribution function can be expressed in closed forms. It is observed that the proposed bivariate distribution can be obtained using Clayton copula with generalized exponential distribution as marginals. We derive different properties of this new distribution. It is a five-parameter distribution, and the maximum likelihood estimators of the unknown parameters cannot be obtained in closed forms. We propose some alternative estimators, which can be obtained quite easily, and they can be used as initial guesses to compute the maximum likelihood estimates. One data set has been analyzed for illustrative purposes. Finally we propose some generalization of the proposed model.  相似文献   

2.
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.  相似文献   

3.
Recently Sarhan and Balakrishnan [2007. A new class of bivariate distribution and its mixture. Journal of Multivariate Analysis 98, 1508–1527] introduced a new bivariate distribution using generalized exponential and exponential distributions. They discussed several interesting properties of this new distribution. Unfortunately, they did not discuss any estimation procedure of the unknown parameters. In this paper using the similar idea as of Sarhan and Balakrishnan [2007. A new class of bivariate distribution and its mixture. Journal of Multivariate Analysis 98, 1508–1527], we have proposed a singular bivariate distribution, which has an extra shape parameter. It is observed that the marginal distributions of the proposed bivariate distribution are more flexible than the corresponding marginal distributions of the Marshall–Olkin bivariate exponential distribution, Sarhan–Balakrishnan's bivariate distribution or the bivariate generalized exponential distribution. Different properties of this new distribution have been discussed. We provide the maximum likelihood estimators of the unknown parameters using EM algorithm. We reported some simulation results and performed two data analysis for illustrative purposes. Finally we propose some generalizations of this bivariate model.  相似文献   

4.
Introducing a shape parameter to an exponential model is nothing new. There are many ways to introduce a shape parameter to an exponential distribution. The different methods may result in variety of weighted exponential (WE) distributions. In this article, we have introduced a shape parameter to an exponential model using the idea of Azzalini, which results in a new class of WE distributions. This new WE model has the probability density function (PDF) whose shape is very close to the shape of the PDFS of Weibull, gamma or generalized exponential distributions. Therefore, this model can be used as an alternative to any of these distributions. It is observed that this model can also be obtained as a hidden truncation model. Different properties of this new model have been discussed and compared with the corresponding properties of well-known distributions. Two data sets have been analysed for illustrative purposes and it is observed that in both the cases it fits better than Weibull, gamma or generalized exponential distributions.  相似文献   

5.
ABSTRACT

Maximum likelihood estimation for the type I generalised logistic distributions is investigated. We show that the maximum likelihood estimation usually exists, except when the so-called embedded model problem occurs. A full set of embedded distributions is derived, including Gumbel distribution and a two-parameter reciprocal exponential distribution. Properties relating the embedded distributions are given. We also provide criteria to determine when the embedded distribution occurs. Examples are given for illustration.  相似文献   

6.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

7.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

8.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

9.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

10.
We propose a three-parameter distribution referred to as the reflected- shifted-truncated gamma (RSTG) distribution to model negatively skewed data. Various properties of the proposed distribution are derived. The estimation of the model parameters is approached by maximum likelihood methods and the observed information matrix is derived. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. Using information theoretic criteria, we compare the RSTG distribution to the exponential, generalized F, generalized gamma, Gompertz, log-logistic, lognormal, Rayleigh, and Weibull distributions in three negatively skewed real datasets.  相似文献   

11.
The two-parameter generalized exponential distribution was recently introduced by Gupta and Kundu (Austral. New Zealand J. Statist. 40 (1999) 173). It is observed that the Generalized Exponential distribution can be used quite effectively to analyze skewed data set as an alternative to the more popular log-normal distribution. In this paper, we use the ratio of the maximized likelihoods in choosing between the log-normal and generalized exponential distributions. We obtain asymptotic distributions of the logarithm of the ratio of the maximized likelihoods and use them to determine the required sample size to discriminate between the two distributions for a user specified probability of correct selection and tolerance limit.  相似文献   

12.
In this paper, we introduce a bivariate weighted exponential distribution based on the generalized exponential distribution. This class of distributions generalizes the bivariate distribution with weighted exponential marginals (BWE). We derive different properties of this new distribution. It is a four-parameter distribution, and the maximum-likelihood estimator of unknown parameters cannot be obtained in explicit forms. One data set has been re-analyzed and it is observed that the proposed distribution provides better fit than the BWE distribution.  相似文献   

13.
Arnab Koley  Ayon Ganguly 《Statistics》2017,51(6):1304-1325
Kundu and Gupta [Analysis of hybrid life-tests in presence of competing risks. Metrica. 2007;65:159–170] provided the analysis of Type-I hybrid censored competing risks data, when the lifetime distributions of the competing cause of failures follows exponential distribution. In this paper, we consider the analysis of Type-II hybrid censored competing risks data. It is assumed that latent lifetime distributions of the competing causes of failures follow independent exponential distributions with different scale parameters. It is observed that the maximum likelihood estimators of the unknown parameters do not always exist. We propose the modified estimators of the scale parameters, which coincide with the corresponding maximum likelihood estimators when they exist, and asymptotically they are equivalent. We obtain the exact distribution of the proposed estimators. Using the exact distributions of the proposed estimators, associated confidence intervals are obtained. The asymptotic and bootstrap confidence intervals of the unknown parameters are also provided. Further, Bayesian inference of some unknown parametric functions under a very flexible Beta-Gamma prior is considered. Bayes estimators and associated credible intervals of the unknown parameters are obtained using the Monte Carlo method. Extensive Monte Carlo simulations are performed to see the effectiveness of the proposed estimators and one real data set has been analysed for the illustrative purposes. It is observed that the proposed model and the method work quite well for this data set.  相似文献   

14.
The new class of weighted exponential (WE) distributions obtained by Gupta and Kundu (2009) by implementing Azzalini's method to the exponential distribution. In this study, we generalize the WE distribution to a new class of generalized weighted exponential (GWE) distribution. Several statistical and reliability properties of this new class of distribution are obtained. Estimation and inference procedure for distribution parameters are investigated. Finally, we show that the proposed model can provide better fit than the recent class of weighted exponential by using two real data examples.  相似文献   

15.
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.  相似文献   

16.
In this work, we propose a new model called generalized symmetrical partial linear model, based on the theory of generalized linear models and symmetrical distributions. In our model the response variable follows a symmetrical distribution such a normal, Student-t, power exponential, among others. Following the context of generalized linear models we consider replacing the traditional linear predictors by the more general predictors in whose case one covariate is related with the response variable in a non-parametric fashion, that we do not specified the parametric function. As an example, we could imagine a regression model in which the intercept term is believed to vary in time or geographical location. The backfitting algorithm is used for estimating the parameters of the proposed model. We perform a simulation study for assessing the behavior of the penalized maximum likelihood estimators. We use the quantile residuals for checking the assumption of the model. Finally, we analyzed real data set related with pH rivers in Ireland.  相似文献   

17.
The McDonald extended distribution: properties and applications   总被引:1,自引:0,他引:1  
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.  相似文献   

18.
ABSTRACT

This paper considers a class of absolutely continuous bivariate exponential distributions whose univariate margins are the ordinary exponential distributions. We study different mathematical properties of the proposed model. The estimation of the parameters by maximum likelihood is discussed. Application is made to a real data example to illustrate the flexibility of theproposed distribution for data analysis.  相似文献   

19.
We formulate and study a four-parameter lifetime model called the beta extended half-normal distribution. This model includes as sub-models the exponential, extended half-normal and half-normal distributions. We derive expansions for the new density function which do not depend on complicated functions. We obtain explicit expressions for the moments and incomplete moments, generating function, mean deviations, Bonferroni and Lorenz curves and Rényi entropy. In addition, the model parameters are estimated by maximum likelihood. We provide the observed information matrix. The new model is modified to cope with possible long-term survivors in the data. The usefulness of the new distribution is shown by means of two real data sets.  相似文献   

20.
Recently, Gupta and Kundu [R.D. Gupta and D. Kundu, A new class of weighted exponential distributions, Statistics 43 (2009), pp. 621–634] have introduced a new class of weighted exponential (WE) distributions, and this can be used quite effectively to model lifetime data. In this paper, we introduce a new class of weighted Marshall–Olkin bivariate exponential distributions. This new singular distribution has univariate WE marginals. We study different properties of the proposed model. There are four parameters in this model and the maximum-likelihood estimators (MLEs) of the unknown parameters cannot be obtained in explicit forms. We need to solve a four-dimensional optimization problem to compute the MLEs. One data set has been analysed for illustrative purposes and finally we propose some generalization of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号