首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenotype of a quantitative trait locus (QTL) is often modeled by a finite mixture of normal distributions. If the QTL effect depends on the number of copies of a specific allele one carries, then the mixture model has three components. In this case, the mixing proportions have a binomial structure according to the Hardy–Weinberg equilibrium. In the search for QTL, a significance test of homogeneity against the Hardy–Weinberg normal mixture model alternative is an important first step. The LOD score method, a likelihood ratio test used in genetics, is a favored choice. However, there is not yet a general theory for the limiting distribution of the likelihood ratio statistic in the presence of unknown variance. This paper derives the limiting distribution of the likelihood ratio statistic, which can be described by the supremum of a quadratic form of a Gaussian process. Further, the result implies that the distribution of the modified likelihood ratio statistic is well approximated by a chi-squared distribution. Simulation results show that the approximation has satisfactory precision for the cases considered. We also give a real-data example.  相似文献   

2.
This paper analyses the likelihood ratio test for the hypothesis of reduced cointegration rank in a Gaussian vector autoregressive model. The usual asymptotic distribution typically gives rather large size distortions. This is explained by the fact that the asymptotic distribution of the likelihood ratio test statistic varies across the parameter space. A much improved distribution approximation can be obtained using local asymptotic theory. The idea is discussed for some low dimensional examples.  相似文献   

3.
Exact confidence interval estimation for accelerated life regression models with censored smallest extreme value (or Weibull) data is often impractical. This paper evaluates the accuracy of approximate confidence intervals based on the asymptotic normality of the maximum likelihood estimator, the asymptotic X2distribution of the likelihood ratio statistic, mean and variance correction to the likelihood ratio statistic, and the so-called Bartlett correction to the likelihood ratio statistic. The Monte Carlo evaluations under various degrees of time censoring show that uncorrected likelihood ratio intervals are very accurate in situations with heavy censoring. The benefits of mean and variance correction to the likelihood ratio statistic are only realized with light or no censoring. Bartlett correction tends to result in conservative intervals. Intervals based on the asymptotic normality of maximum likelihood estimators are anticonservative and should be used with much caution.  相似文献   

4.
5.
In this article, we study the profile likelihood estimation and inference on the partially linear model with a diverging number of parameters. Polynomial splines are applied to estimate the nonparametric component and we focus on constructing profile likelihood ratio statistic to examine the testing problem for the parametric component in the partially linear model. Under some regularity conditions, the asymptotic distribution of profile likelihood ratio statistic is proposed when the number of parameters grows with the sample size. Numerical studies confirm our theory.  相似文献   

6.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

7.
Abstract

In this article, empirical likelihood is applied to the linear regression model with inequality constraints. We prove that asymptotic distribution of the adjusted empirical likelihood ratio test statistic is a weighted mixture of chi-square distribution.  相似文献   

8.
In this paper, we use a smoothed empirical likelihood method to investigate the difference of quantiles under censorship. An empirical log-likelihood ratio is derived and its asymptotic distribution is shown to be chi-squared. Approximate confidence regions based on this method are constructed. Simulation studies are used to compare the empirical likelihood and the normal approximation method in terms of its coverage accuracy. It is found that the empirical likelihood method provides a much better performance. The research is supported by NSFC (10231030) and RFDP.  相似文献   

9.
We derive a likelihood ratio test for generalized variance a in factor analysis model. The asymptotic distribution of the test statistic follows chi-square distribution with one degree of freedom from a general theory of likelihood ratio test.  相似文献   

10.
Stochastic ordering between probability distributions has been widely studied in the past 50 years. Because it is often easy to make valuable judgments when such orderings exist, it is desirable to recognize their existence and to model distributional structures under them. Likelihood ratio test is the most commonly used method to test hypotheses involving stochastic orderings. Among the various formally defined notions of stochastic ordering, the least stringent is simple stochastic ordering. In this paper, we consider testing the hypothesis that all multinomial populations are identically distributed against the alternative that they are in simple stochastic ordering. We construct likelihood ratio test statistic for this hypothesis test problem, provide limit form of the objective function corresponding to the test statistic and show that the test statistic is asymptotically distributed as a mixture of chi-squared distributions, i.e., a chi-bar-squared distribution.  相似文献   

11.
We show that the asymptotic mean of the log-likelihood ratio in a misspecified model is a differential geometric quantity that is related to the exponential curvature of Efron (1978), Amari (1982), and the preferred point geometry of [Critchley et al., 1993] and [Critchley et al., 1994]. The mean is invariant with respect to reparameterization, which leads to the differential geometrical approach where coordinate-system invariant quantities like statistical curvatures play an important role. When models are misspecified, the likelihood ratios do not have the chi-squared asymptotic limit, and the asymptotic mean of the likelihood ratio depends on two geometric factors, the departure of models from exponential families (i.e. the exponential curvature) and the departure of embedding spaces from being totally flat in the sense of Critchley et al. (1994). As a special case, the mean becomes the mean of the usual chi-squared limit (i.e. the half of the degrees of freedom) when these two curvatures vanish. The effect of curvatures is shown in the non-nested hypothesis testing approach of Vuong (1989), and we correct the numerator of the test statistic with an estimated asymptotic mean of the log-likelihood ratio to improve the asymptotic approximation to the sampling distribution of the test statistic.  相似文献   

12.
Effective implementation of likelihood inference in models for high‐dimensional data often requires a simplified treatment of nuisance parameters, with these having to be replaced by handy estimates. In addition, the likelihood function may have been simplified by means of a partial specification of the model, as is the case when composite likelihood is used. In such circumstances tests and confidence regions for the parameter of interest may be constructed using Wald type and score type statistics, defined so as to account for nuisance parameter estimation or partial specification of the likelihood. In this paper a general analytical expression for the required asymptotic covariance matrices is derived, and suggestions for obtaining Monte Carlo approximations are presented. The same matrices are involved in a rescaling adjustment of the log likelihood ratio type statistic that we propose. This adjustment restores the usual chi‐squared asymptotic distribution, which is generally invalid after the simplifications considered. The practical implication is that, for a wide variety of likelihoods and nuisance parameter estimates, confidence regions for the parameters of interest are readily computable from the rescaled log likelihood ratio type statistic as well as from the Wald type and score type statistics. Two examples, a measurement error model with full likelihood and a spatial correlation model with pairwise likelihood, illustrate and compare the procedures. Wald type and score type statistics may give rise to confidence regions with unsatisfactory shape in small and moderate samples. In addition to having satisfactory shape, regions based on the rescaled log likelihood ratio type statistic show empirical coverage in reasonable agreement with nominal confidence levels.  相似文献   

13.
An empirical likelihood ratio test is developed for testing for or against inequality constraints on regression parameters in linear regression analysis. The proposed approach imposes no parametric model nor identically distributing assumption on the random errors. The asymptotic distribution of the proposed test statistic under null hypothesis is shown to be of chi-bar-squared type. The asymptotic power under contiguous alternatives is also briefly discussed. Moreover, an adjusted empirical likelihood method is adopted to improve the small sample size behaviour of the proposed test. Several simulation studies are carried out to assess the finite sample performance of the proposed tests. The results reveal that the proposed tests could be valuable for improving inference efficiency. A real-life example is discussed to illustrate the theoretical results.  相似文献   

14.
Conditions on the hazard functions under the usual log-rank test remains locally optimal for the Cox regression model under random censoring (withdrawal) are examined. In the light of these, the asymptotic efficiency results pertaining to the Cox partial likelihood statistic and the log-rank statistic are studied.  相似文献   

15.
Pairwise likelihood functions are convenient surrogates for the ordinary likelihood, useful when the latter is too difficult or even impractical to compute. One drawback of pairwise likelihood inference is that, for a multidimensional parameter of interest, the pairwise likelihood analogue of the likelihood ratio statistic does not have the standard chi-square asymptotic distribution. Invoking the theory of unbiased estimating functions, this paper proposes and discusses a computationally and theoretically attractive approach based on the derivation of empirical likelihood functions from the pairwise scores. This approach produces alternatives to the pairwise likelihood ratio statistic, which allow reference to the usual asymptotic chi-square distribution and which are useful when the elements of the Godambe information are troublesome to evaluate or in the presence of large data sets with relative small sample sizes. Two Monte Carlo studies are performed in order to assess the finite-sample performance of the proposed empirical pairwise likelihoods.  相似文献   

16.
After reading a few articles in the nonlinear econonetric literature one begins to notice that each discussion follows roughly the same lines as the classical treatment of maximum likelihood estimation. There are some technical problems having to do with simultaneously conditioning on the exogenous variables and subjecting the true parameter to a Pittman drift which prevent the use of the classical methods of proof but the basic impression of similarity is correct . An estimator – be it nonlinear least squares, three – stage nonlinear least squares, or whatever – is the solution of an optimization problem. And the objective function of the optimization problem can be treated as if it were the likelihood to derive the Wald test statistic, the likelihood ratio test statistic , and Rao's efficient score statistic. Their asymptotic null and non – null distributions can be found using arguments fairly similar to the classical maximum likelihood arguments. In this article we exploit these observations and unify much of the nonlinear econometric literature. That which escapes this unificationis that which has an objective function which is not twice continuously differentiable with respect to the parameters – minimum absolute deviations regression for example.

The model which generates the data need not bethe same as the model which was presumed to define the optimization problem. Thus, these results can be used to obtain the asymptotic behavior of inference procedures under specification error We think that this will prove to be the nost useful feature of the paper. For example, it i s not necessary toresortto Monte Carlo simulat ionto determine i f a Translog estimate of an elasticity of sub stitution obtained by nonlinear three-stage least squares is robust against a CES truestate of nature. The asymptotic approximations we give here w ill provide an analytic answer to the question, sufficiently accurate for most purposes.  相似文献   

17.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

18.
The empirical likelihood method is proposed to construct the confidence regions for the difference in value between coefficients of two-sample linear regression model. Unlike existing empirical likelihood procedures for one-sample linear regression models, as the empirical likelihood ratio function is not concave, the usual maximum empirical likelihood estimation cannot be obtained directly. To overcome this problem, we propose to incorporate a natural and well-explained restriction into likelihood function and obtain a restricted empirical likelihood ratio statistic (RELR). It is shown that RELR has an asymptotic chi-squared distribution. Furthermore, to improve the coverage accuracy of the confidence regions, a Bartlett correction is applied. The effectiveness of the proposed approach is demonstrated by a simulation study.  相似文献   

19.
Abstract

In a 2-step monotone missing dataset drawn from a multivariate normal population, T2-type test statistic (similar to Hotelling’s T2 test statistic) and likelihood ratio (LR) are often used for the test for a mean vector. In complete data, Hotelling’s T2 test and LR test are equivalent, however T2-type test and LR test are not equivalent in the 2-step monotone missing dataset. Then we interest which statistic is reasonable with relation to power. In this paper, we derive asymptotic power function of both statistics under a local alternative and obtain an explicit form for difference in asymptotic power function. Furthermore, under several parameter settings, we compare LR and T2-type test numerically by using difference in empirical power and in asymptotic power function. Summarizing obtained results, we recommend applying LR test for testing a mean vector.  相似文献   

20.
Hollander (1970) proposed a conditionally distribution-free test of bivariate symmetry based on the empirical distribution function. In this paper Hollander’s test statistic is examined In greater detail: in particular; its conditional asymptotic distribution is derived under the null hypothesis as well as under a sequence of local alternatives. Percentage points of the asymptotic distribution are presented; a power comparison between Hollander’s statistic and the likelihood ratio criterion in testing a variant of the sphericity hypothesis in multivariate analysis is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号