首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This article considers first-order autoregressive panel model that is a simple model for dynamic panel data (DPD) models. The generalized method of moments (GMM) gives efficient estimators for these models. This efficiency is affected by the choice of the weighting matrix that has been used in GMM estimation. The non-optimal weighting matrices have been used in the conventional GMM estimators. This led to a loss of efficiency. Therefore, we present new GMM estimators based on optimal or suboptimal weighting matrices. Monte Carlo study indicates that the bias and efficiency of the new estimators are more reliable than the conventional estimators.  相似文献   

2.
ABSTRACT

We study partial linear models where the linear covariates are endogenous and cause an over-identified problem. We propose combining the profile principle with local linear approximation and the generalized moment methods (GMM) to estimate the parameters of interest. We show that the profiled GMM estimators are root? n consistent and asymptotically normally distributed. By appropriately choosing the weight matrix, the estimators can attain the efficiency bound. We further consider variable selection by using the moment restrictions imposed on endogenous variables when the dimension of the covariates may be diverging with the sample size, and propose a penalized GMM procedure, which is shown to have the sparsity property. We establish asymptotic normality of the resulting estimators of the nonzero parameters. Simulation studies have been presented to assess the finite-sample performance of the proposed procedure.  相似文献   

3.
The accuracy of orthogonal series types of density estimators can be conveniently measured in terms of their Mean Integrated Squared Error, or MISE. Further reduction In MISE is achieved by introducing certain weighting factors into the estimators. In this paper we consider optimal weighting matrices, and the result is a new class of density estimators, the collection of matrix density estimators.  相似文献   

4.
从广义矩估计(GMM)到广义经验似然估计(GEL)的发展,是由于GMM估计量小样本性质的不足,促使人们寻求方法的改进和拓展。通过必要的证明和推导,详细解析GEL类估计量(包括EL,ET,CUE)的逻辑关系和数理结构,认识GEL的内在本质,并运用随机模拟方法证实了在小样本场合GEL类估计量比GMM估计量具有更小的估计偏差和均方误差,即GEL类估计改进了GMM估计的小样本性质。  相似文献   

5.
For multivariate survival data, we study the generalized method of moments (GMM) approach to estimation and inference based on the marginal additive hazards model. We propose an efficient iterative algorithm using closed‐form solutions, which dramatically reduces the computational burden. Asymptotic normality of the proposed estimators is established, and the corresponding variance–covariance matrix can be consistently estimated. Inference procedures are derived based on the asymptotic chi‐squared distribution of the GMM objective function. Simulation studies are conducted to empirically examine the finite sample performance of the proposed method, and a real data example from a dental study is used for illustration.  相似文献   

6.
Calibration in macroeconomics involves choosing fre parameters by matching certain moments of simulted models with those of data. We formally examine this method by treating the process of calibration as an econometric estimator. A numerical version of the Mehra-Prescott (1985) economy is the setting for an evaluation of calibration estimators via Monte Carlo methods. While these estimators sometimes have reasonable finite-sample properties they are not robust to mistakes in setting non-free parameters. In contrast, generalized method-of-moments (GMM) estimators have satisfactory finite-sample characteristics, quick convergence, and informational requirements less stringent than those of calibration estimators. In dynamic equilibrium models in which GMM is infeasible we offer some suggestions for improving estimates based on calibration methodology.  相似文献   

7.
Calibration in macroeconomics involves choosing fre parameters by matching certain moments of simulted models with those of data. We formally examine this method by treating the process of calibration as an econometric estimator. A numerical version of the Mehra-Prescott (1985) economy is the setting for an evaluation of calibration estimators via Monte Carlo methods. While these estimators sometimes have reasonable finite-sample properties they are not robust to mistakes in setting non-free parameters. In contrast, generalized method-of-moments (GMM) estimators have satisfactory finite-sample characteristics, quick convergence, and informational requirements less stringent than those of calibration estimators. In dynamic equilibrium models in which GMM is infeasible we offer some suggestions for improving estimates based on calibration methodology.  相似文献   

8.
This paper introduces a new class of M-estimators based on generalised empirical likelihood (GEL) estimation with some auxiliary information available in the sample. The resulting class of estimators is efficient in the sense that it achieves the same asymptotic lower bound as that of the efficient generalised method of moment (GMM) estimator with the same auxiliary information. The paper also shows that in case of smooth estimating equations the proposed estimators enjoy a small second order bias property compared to both efficient GMM and full GEL estimators. Analytical formulae to obtain bias corrected estimators are also provided. Simulations show that with correctly specified auxiliary information the proposed estimators and in particular those based on empirical likelihood outperform standard M and efficient GMM estimators both in terms of finite sample bias and efficiency. On the other hand with moderately misspecified auxiliary information estimators based on the nonparametric tilting method are typically characterised by the best finite sample properties.  相似文献   

9.
This article establishes the almost sure convergence and asymptotic normality of levels and differenced quasi maximum likelihood (QML) estimators of dynamic panel data models. The QML estimators are robust with respect to initial conditions, conditional and time-series heteroskedasticity, and misspecification of the log-likelihood. The article also provides an ECME algorithm for calculating levels QML estimates. Finally, it compares the finite-sample performance of levels and differenced QML estimators, the differenced generalized method of moments (GMM) estimator, and the system GMM estimator. The QML estimators usually have smaller— typically substantially smaller—bias and root mean squared errors than the panel data GMM estimators.  相似文献   

10.

In this paper the efficiency property of the estimators of the parameters of the bivariate Pearson type VII distribution is studied inside the family of linear estimators, assuming that the sample is constituted by dependent random vectors. It is proven that, although there are not efficient linear estimators, the sample mean and the sample covariance matrix (affected by an unbiasedness weighting) are unbiased linear estimators of minimum distance to the Cramér-Rao lower bound. Finally, a numerical simulation example shows that the proposed estimators are computationally feasible.  相似文献   

11.
In this article, we propose instrumental variables (IV) and generalized method of moments (GMM) estimators for panel data models with weakly exogenous variables. The model is allowed to include heterogeneous time trends besides the standard fixed effects (FE). The proposed IV and GMM estimators are obtained by applying a forward filter to the model and a backward filter to the instruments in order to remove FE, thereby called the double filter IV and GMM estimators. We derive the asymptotic properties of the proposed estimators under fixed T and large N, and large T and large N asymptotics where N and T denote the dimensions of cross section and time series, respectively. It is shown that the proposed IV estimator has the same asymptotic distribution as the bias corrected FE estimator when both N and T are large. Monte Carlo simulation results reveal that the proposed estimator performs well in finite samples and outperforms the conventional IV/GMM estimators using instruments in levels in many cases.  相似文献   

12.
Both the least squares estimator and M-estimators of regression coefficients are susceptible to distortion when high leverage points occur among the predictor variables in a multiple linear regression model. In this article a weighting scheme which enables one to bound the leverage values of a weighted matrix of predictor variables is proposed. Bounded-leverage weighting of the predictor variables followed by M-estimation of the regression coefficients is shown to be effective in protecting against distortion due to extreme predictor-variable values, extreme response values, or outlier-induced multieollinearites. Bounded-leverage estimators can also protect against distortion by small groups of high leverage points.  相似文献   

13.
In this paper, we consider dynamic panel data models where the autoregressive parameter changes over time. We propose the GMM and ML estimators for this model. We conduct Monte Carlo simulation to compare the performance of these two estimators. The simulation results show that the ML estimator outperforms the GMM estimator.  相似文献   

14.
Generalized method of moments (GMM) estimation has become an important unifying framework for inference in econometrics in the last 20 years. It can be thought of as encompassing almost all of the common estimation methods, such as maximum likelihood, ordinary least squares, instrumental variables, and two-stage least squares, and nowadays is an important part of all advanced econometrics textbooks. The GMM approach links nicely to economic theory where orthogonality conditions that can serve as such moment functions often arise from optimizing behavior of agents. Much work has been done on these methods since the seminal article by Hansen, and much remains in progress. This article discusses some of the developments since Hansen's original work. In particular, it focuses on some of the recent work on empirical likelihood–type estimators, which circumvent the need for a first step in which the optimal weight matrix is estimated and have attractive information theoretic interpretations.  相似文献   

15.
Least-squares and quantile regressions are method of moments techniques that are typically used in isolation. A leading example where efficiency may be gained by combining least-squares and quantile regressions is one where some information on the error quantiles is available but the error distribution cannot be fully specified. This estimation problem may be cast in terms of solving an over-determined estimating equation (EE) system for which the generalized method of moments (GMM) and empirical likelihood (EL) are approaches of recognized importance. The major difficulty with implementing these techniques here is that the EEs associated with the quantiles are non-differentiable. In this paper, we develop a kernel-based smoothing technique for non-smooth EEs, and derive the asymptotic properties of the GMM and maximum smoothed EL (MSEL) estimators based on the smoothed EEs. Via a simulation study, we investigate the finite sample properties of the GMM and MSEL estimators that combine least-squares and quantile moment relationships. Applications to real datasets are also considered.  相似文献   

16.
The author considers serial correlation testing in seasonal time series models. He proposes a test statistic based on a spectral approach. Many tests of this type rely on kernel-based spectral density estimators that assign larger weights to low order lags than to high ones. Under seasonality, however, large autocorrelations may occur at seasonal lags that classical kernel estimators cannot take into account. The author thus proposes a test statistic that relies on the spectral density estimator of Shin (2004), whose weighting scheme is more adapted to this context. The distribution of his test statistic is derived under the null hypothesis and he studies its behaviour under fixed and local alternatives. He establishes the consistency of the test under a general fixed alternative. He also makes recommendations for the choice of the smoothing parameters. His simulation results suggest that his test is more powerful against seasonality than alternative procedures based on classical weighting schemes. He illustrates his procedure with monthly statistics on employment among young Americans.  相似文献   

17.
We propose new ensemble approaches to estimate the population mean for missing response data with fully observed auxiliary variables. We first compress the working models according to their categories through a weighted average, where the weights are proportional to the square of the least‐squares coefficients of model refitting. Based on the compressed values, we develop two ensemble frameworks, under which one is to adjust weights in the inverse probability weighting procedure and the other is built upon an additive structure by reformulating the augmented inverse probability weighting function. The asymptotic normality property is established for the proposed estimators through the theory of estimating functions with plugged‐in nuisance parameter estimates. Simulation studies show that the new proposals have substantial advantages over existing ones for small sample sizes, and an acquired immune deficiency syndrome data example is used for illustration.  相似文献   

18.
The paper provides an estimation procedure for the linear model with arbitrary constraints on parameters. The consistency of the both the regular GMM and the bootstrapped GMM estimators for this model is shown. The estimation is formulated and solved as an iterative NLP problem with inequality constraints.  相似文献   

19.
This article derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously-updated GMM estimators in models that may not satisfy the fundamental asset-pricing restrictions in population. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. While the results for the maximum likelihood estimator are only applicable to linear asset-pricing models, the asymptotic distribution of the continuously-updated GMM estimator is derived for general, possibly nonlinear, models. The large corrections in the asymptotic variances, that arise from explicitly incorporating model misspecification in the analysis, are illustrated using simulations and an empirical application.  相似文献   

20.
When data are missing, analyzing records that are completely observed may cause bias or inefficiency. Existing approaches in handling missing data include likelihood, imputation and inverse probability weighting. In this paper, we propose three estimators inspired by deleting some completely observed data in the regression setting. First, we generate artificial observation indicators that are independent of outcome given the observed data and draw inferences conditioning on the artificial observation indicators. Second, we propose a closely related weighting method. The proposed weighting method has more stable weights than those of the inverse probability weighting method (Zhao, L., Lipsitz, S., 1992. Designs and analysis of two-stage studies. Statistics in Medicine 11, 769–782). Third, we improve the efficiency of the proposed weighting estimator by subtracting the projection of the estimating function onto the nuisance tangent space. When data are missing completely at random, we show that the proposed estimators have asymptotic variances smaller than or equal to the variance of the estimator obtained from using completely observed records only. Asymptotic relative efficiency computation and simulation studies indicate that the proposed weighting estimators are more efficient than the inverse probability weighting estimators under wide range of practical situations especially when the missingness proportion is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号