首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount the variances element by element and therefore allowing a flexible and pragmatic variance modelling approach. Diagnostic tests and sequential model monitoring are discussed in some detail. The proposed estimation theory is applied to a four-dimensional time series, comprising spot prices of aluminium, copper, lead and zinc of the London metal exchange. The empirical findings suggest that the proposed Bayesian procedure can be effectively applied to financial data, overcoming many of the disadvantages of existing volatility models.  相似文献   

2.
3.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

4.
The use of Bayesian nonparametrics models has increased rapidly over the last few decades driven by increasing computational power and the development of efficient Markov chain Monte Carlo algorithms. We review some applications of these models in economic applications including: volatility modelling (using both stochastic volatility models and GARCH-type models) with Dirichlet process mixture models, uses in portfolio allocation problems, long memory models with flexible forms of time-dependence, flexible extension of the dynamic Nelson-Siegel model for interest rate yields and multivariate time series models used in macroeconometrics.  相似文献   

5.
To capture mean and variance asymmetries and time‐varying volatility in financial time series, we generalize the threshold stochastic volatility (THSV) model and incorporate a heavy‐tailed error distribution. Unlike existing stochastic volatility models, this model simultaneously accounts for uncertainty in the unobserved threshold value and in the time‐delay parameter. Self‐exciting and exogenous threshold variables are considered to investigate the impact of a number of market news variables on volatility changes. Adopting a Bayesian approach, we use Markov chain Monte Carlo methods to estimate all unknown parameters and latent variables. A simulation experiment demonstrates good estimation performance for reasonable sample sizes. In a study of two international financial market indices, we consider two variants of the generalized THSV model, with US market news as the threshold variable. Finally, we compare models using Bayesian forecasting in a value‐at‐risk (VaR) study. The results show that our proposed model can generate more accurate VaR forecasts than can standard models.  相似文献   

6.
Risks are usually represented and measured by volatility–covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility–covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

7.
We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online.  相似文献   

8.
Risks are usually represented and measured by volatility-covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility-covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

9.
The challenge of modeling, estimating, testing, and forecasting financial volatility is both intellectually worthwhile and also central to the successful analysis of financial returns and optimal investment strategies. In each of the three primary areas of volatility modeling, namely, conditional (or generalized autoregressive conditional heteroskedasticity) volatility, stochastic volatility and realized volatility (RV), numerous univariate volatility models of individual financial assets and multivariate volatility models of portfolios of assets have been established. This special issue has eleven innovative articles, eight of which are focused directly on RV and three on long memory, while two are concerned with both RV and long memory.  相似文献   

10.
The challenge of modeling, estimating, testing, and forecasting financial volatility is both intellectually worthwhile and also central to the successful analysis of financial returns and optimal investment strategies. In each of the three primary areas of volatility modeling, namely, conditional (or generalized autoregressive conditional heteroskedasticity) volatility, stochastic volatility and realized volatility (RV), numerous univariate volatility models of individual financial assets and multivariate volatility models of portfolios of assets have been established. This special issue has eleven innovative articles, eight of which are focused directly on RV and three on long memory, while two are concerned with both RV and long memory.  相似文献   

11.
《Econometric Reviews》2013,32(4):385-424
This paper introduces nonlinear dynamic factor models for various applications related to risk analysis. Traditional factor models represent the dynamics of processes driven by movements of latent variables, called the factors. Our approach extends this setup by introducing factors defined as random dynamic parameters and stochastic autocorrelated simulators. This class of factor models can represent processes with time varying conditional mean, variance, skewness and excess kurtosis. Applications discussed in the paper include dynamic risk analysis, such as risk in price variations (models with stochastic mean and volatility), extreme risks (models with stochastic tails), risk on asset liquidity (stochastic volatility duration models), and moral hazard in insurance analysis.

We propose estimation procedures for models with the marginal density of the series and factor dynamics parameterized by distinct subsets of parameters. Such a partitioning of the parameter vector found in many applications allows to simplify considerably statistical inference. We develop a two- stage Maximum Likelihood method, called the Finite Memory Maximum Likelihood, which is easy to implement in the presence of multiple factors. We also discuss simulation based estimation, testing, prediction and filtering.  相似文献   

12.
We generalize the factor stochastic volatility (FSV) model of Pitt and Shephard [1999. Time varying covariances: a factor stochastic volatility approach (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, vol. 6, Oxford University Press, London, pp. 547–570.] and Aguilar and West [2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18, 338–357.] in two important directions. First, we make the FSV model more flexible and able to capture more general time-varying variance–covariance structures by letting the matrix of factor loadings to be time dependent. Secondly, we entertain FSV models with jumps in the common factors volatilities through So, Lam and Li's [1998. A stochastic volatility model with Markov switching. J. Business Econom. Statist. 16, 244–253.] Markov switching stochastic volatility model. Novel Markov Chain Monte Carlo algorithms are derived for both classes of models. We apply our methodology to two illustrative situations: daily exchange rate returns [Aguilar, O., West, M., 2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Business Econom. Statist. 18, 338–357.] and Latin American stock returns [Lopes, H.F., Migon, H.S., 2002. Comovements and contagion in emergent markets: stock indexes volatilities. In: Gatsonis, C., Kass, R.E., Carriquiry, A.L., Gelman, A., Verdinelli, I. Pauler, D., Higdon, D. (Eds.), Case Studies in Bayesian Statistics, vol. 6, pp. 287–302].  相似文献   

13.
It is well known that parameter estimates and forecasts are sensitive to assumptions about the tail behavior of the error distribution. In this article, we develop an approach to sequential inference that also simultaneously estimates the tail of the accompanying error distribution. Our simulation-based approach models errors with a tν-distribution and, as new data arrives, we sequentially compute the marginal posterior distribution of the tail thickness. Our method naturally incorporates fat-tailed error distributions and can be extended to other data features such as stochastic volatility. We show that the sequential Bayes factor provides an optimal test of fat-tails versus normality. We provide an empirical and theoretical analysis of the rate of learning of tail thickness under a default Jeffreys prior. We illustrate our sequential methodology on the British pound/U.S. dollar daily exchange rate data and on data from the 2008–2009 credit crisis using daily S&P500 returns. Our method naturally extends to multivariate and dynamic panel data.  相似文献   

14.
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.  相似文献   

15.
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.  相似文献   

16.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

17.
Accurate volatility forecasting is a key determinant for portfolio management, risk management and economic policy. The paper provides evidence that the sum of squared standardized forecast errors is a reliable measure for model evaluation when the predicted variable is the intra-day realized volatility. The forecasting evaluation is valid for standardized forecast errors with leptokurtic distribution as well as with leptokurtic and asymmetric distributions. Additionally, the widely applied forecasting evaluation function, the predicted mean-squared error, fails to select the adequate model in the case of models with residuals that are leptokurtically and asymmetrically distributed. Hence, the realized volatility forecasting evaluation should be based on the standardized forecast errors instead of their unstandardized version.  相似文献   

18.
Several models have been developed to capture the dynamics of the conditional correlations between time series of financial returns and several studies have shown that the market volatility is a major determinant of the correlations. We extend some models to include explicitly the dependence of the correlations on the market volatility. The models differ by the way—linear or nonlinear, direct or indirect—in which the volatility influences the correlations. Using a wide set of models with two measures of market volatility on two datasets, we find that for some models, the empirical results support to some extent the statistical significance and the economic significance of the volatility effect on the correlations, but the presence of the volatility effect does not improve the forecasting performance of the extended models. Supplementary materials for this article are available online.  相似文献   

19.
在金融风险的度量中,拟合分布的选取直接影响到风险度量的精度问题。针对金融收益序列的动态变化,在SV模型中引入广义双曲线学生偏t分布(SV-GHSKt)拟合金融收益序列的尖峰厚尾、不对称以及杠杆效应等特征,通过马尔科夫蒙特卡洛模拟的方法将收益率序列转化为标准残差序列,然后用极值理论的POT模型拟合标准残差序列尾部分布,进而建立一种新的金融风险度量模型———基于SV-GHSKt-POT的动态VaR模型。用该模型对上证综合指数做实证研究,结果表明,SV-GHSKt-POT的动态VaR模型能很好地模拟金融收益序列的尖峰厚尾性、波动集聚性及杠杆效应,并且能够合理有效地提高风险测度的精度,尤其在高的置信水平下表现更好。  相似文献   

20.
An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an autoregression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study, we analyze ten daily log-return series from the S&P 500 stock index by univariate and multivariate long-memory stochastic volatility models. We compare the in-sample and out-of-sample performance of a number of models within the class of long-memory stochastic volatility models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号