首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

2.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

3.
The generalized Poisson (GP) regression is an increasingly popular approach for modeling overdispersed as well as underdispersed count data. Several parameterizations have been performed for the GP regression, and the two well known models, the GP-1 and the GP-2, have been applied. The GP-P regression, which has been recently proposed, has the advantage of nesting the GP-1 and the GP-2 parametrically, besides allowing the statistical tests of the GP-1 and the GP-2 against a more general alternative. In several cases, count data often have excessive number of zero outcomes than are expected in the Poisson. This zero-inflation phenomenon is a specific cause of overdispersion, and the zero-inflated Poisson (ZIP) regression model has been proposed. However, if the data continue to suggest additional overdispersion, the zero-inflated negative binomial (ZINB-1 and ZINB-2) and the zero-inflated generalized Poisson (ZIGP-1 and ZIGP-2) regression models have been considered as alternatives. This article proposes a functional form of the ZIGP which mixes a distribution degenerate at zero with a GP-P distribution. The suggested model has the advantage of nesting the ZIP and the two well known ZIGP (ZIGP-1 and ZIGP-2) regression models, besides allowing the statistical tests of the ZIGP-1 and the ZIGP-2 against a more general alternative. The ZIP and the functional form of the ZIGP regression models are fitted, compared and tested on two sets of count data; the Malaysian insurance claim data and the German healthcare data.  相似文献   

4.
The negative binomial (NB) model and the generalized Poisson (GP) model are common alternatives to Poisson models when overdispersion is present in the data. Having accounted for initial overdispersion, we may require further investigation as to whether there is evidence for zero-inflation in the data. Two score statistics are derived from the GP model for testing zero-inflation. These statistics, unlike Wald-type test statistics, do not require that we fit the more complex zero-inflated overdispersed models to evaluate zero-inflation. A simulation study illustrates that the developed score statistics reasonably follow a χ2 distribution and maintain the nominal level. Extensive simulation results also indicate the power behavior is different for including a continuous variable than a binary variable in the zero-inflation (ZI) part of the model. These differences are the basis from which suggestions are provided for real data analysis. Two practical examples are presented in this article. Results from these examples along with practical experience lead us to suggest performing the developed score test before fitting a zero-inflated NB model to the data.  相似文献   

5.
Abstract

The objective of this paper is to propose an efficient estimation procedure in a marginal mean regression model for longitudinal count data and to develop a hypothesis test for detecting the presence of overdispersion. We extend the matrix expansion idea of quadratic inference functions to the negative binomial regression framework that entails accommodating both the within-subject correlation and overdispersion issue. Theoretical and numerical results show that the proposed procedure yields a more efficient estimator asymptotically than the one ignoring either the within-subject correlation or overdispersion. When the overdispersion is absent in data, the proposed method might hinder the estimation efficiency in practice, yet the Poisson regression based regression model is fitted to the data sufficiently well. Therefore, we construct the hypothesis test that recommends an appropriate model for the analysis of the correlated count data. Extensive simulation studies indicate that the proposed test can identify the effective model consistently. The proposed procedure is also applied to a transportation safety study and recommends the proposed negative binomial regression model.  相似文献   

6.
Modelling count data with overdispersion and spatial effects   总被引:1,自引:1,他引:0  
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson (GP) distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding correlated spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367, (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper scoring rules, see for example Gneiting and Raftery in Technical Report no. 463, University of Washington, (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, spatial Poisson models with spatially correlated or uncorrelated random effects are to be preferred over all other models according to the considered criteria.  相似文献   

7.
Global regression assumes that a single model adequately describes all parts of a study region. However, the heterogeneity in the data may be sufficiently strong that relationships between variables can not be spatially constant. In addition, the factors involved are often sufficiently complex that it is difficult to identify them in the form of explanatory variables. As a result Geographically Weighted Regression (GWR) was introduced as a tool for the modeling of non-stationary spatial data. Using kernel functions, the GWR methodology allows the model parameters to vary spatially and produces non-parametric surfaces of their estimates. To model count data with overdispersion, it is more appropriate to use a negative binomial distribution instead of a Poisson distribution. Therefore, we propose the Geographically Weighted Negative Binomial Regression (GWNBR) method for the modeling of data with overdispersion. The results obtained using simulated and real data show the superiority of this method for the modeling of non-stationary count data with overdispersion compared with competing models, such as global regressions, e.g., Poisson and negative binomial and Geographically Weighted Poisson Regression (GWPR). Moreover, we illustrate that these competing models are special cases of the more robust model GWNBR.  相似文献   

8.
This paper introduces several forms of nested bivariate zero-inflated generalized Poisson (BZIGP) regression model which can be fitted to bivariate and zero-inflated count data. The main advantage of having several forms of BZIGP regression model is that they are nested and allow likelihood ratio test to be performed for choosing the best model. In addition, the BZIGP regression models have flexible forms of marginal mean–variance relationship, can be fitted to bivariate and zero-inflated count data with positive or negative correlations, and allow additional overdispersion of the two response variables. The BZIGP regression models are fitted to the Australian Health Survey data.  相似文献   

9.
This paper proposes a simple and flexible count data regression model which is able to incorporate overdispersion (the variance is greater than the mean) and which can be considered a competitor to the Poisson model. As is well known, this classical model imposes the restriction that the conditional mean of each count variable must equal the conditional variance. Nevertheless, for the common case of well-dispersed counts the Poisson regression may not be appropriate, while the count regression model proposed here is potentially useful. We consider an application to model counts of medical care utilization by the elderly in the USA using a well-known data set from the National Medical Expenditure Survey (1987), where the dependent variable is the number of stays after hospital admission, and where 10 explanatory variables are analysed.  相似文献   

10.
This paper presents results from a simulation study motivated by a recent study of the relationships between ambient levels of air pollution and human health in the community of Prince George, British Columbia. The simulation study was designed to evaluate the performance of methods based on overdispersed Poisson regression models for the analysis of series of count data. Aspects addressed include estimation of the dispersion parameter, estimation of regression coefficients and their standard errors, and the performance of model selection tests. The effects of varying amounts of overdispersion and differing underlying variance structure on this performance were of particular interest. This study is related to work reported by Breslow (1990) although the context is quite different. Preliminary work led to the conclusion that estimation of the dispersion parameter should be based on Pearson's chi-square statistic rather than the Poisson deviance. Regression coefficients are well estimated, even in the présence of substantial overdispersion and when the model for the variance function is incorrectly specified. Despite potential greater variability, the empirical estimator of the covariance matrix is preferred because the model-based estimator is unreliable in general. When the model for the variance function is incorrect, model-based test statistics may perform poorly, in sharp contrast to empirical test statistics, which performed very well in this study.  相似文献   

11.
Event counts are response variables with non-negative integer values representing the number of times that an event occurs within a fixed domain such as a time interval, a geographical area or a cell of a contingency table. Analysis of counts by Gaussian regression models ignores the discreteness, asymmetry and heteroscedasticity and is inefficient, providing unrealistic standard errors or possibly negative predictions of the expected number of events. The Poisson regression is the standard model for count data with underlying assumptions on the generating process which may be implausible in many applications. Statisticians have long recognized the limitation of imposing equidispersion under the Poisson regression model. A typical situation is when the conditional variance exceeds the conditional mean, in which case models allowing for overdispersion are routinely used. Less reported is the case of underdispersion with fewer modeling alternatives and assessments available in the literature. One of such alternatives, the Gamma-count model, is adopted here in the analysis of an agronomic experiment designed to investigate the effect of levels of defoliation on different phenological states upon the number of cotton bolls. Data set and code for analysis are available as online supplements. Results show improvements over the Poisson model and the semi-parametric quasi-Poisson model in capturing the observed variability in the data. Estimating rather than assuming the underlying variance process leads to important insights into the process.  相似文献   

12.
Count data analysis techniques have been developed in biological and medical research areas. In particular, zero-inflated versions of parametric count distributions have been used to model excessive zeros that are often present in these assays. The most common count distributions for analyzing such data are Poisson and negative binomial. However, a Poisson distribution can only handle equidispersed data and a negative binomial distribution can only cope with overdispersion. However, a Conway–Maxwell–Poisson (CMP) distribution [4] can handle a wide range of dispersion. We show, with an illustrative data set on next-generation sequencing of maize hybrids, that both underdispersion and overdispersion can be present in genomic data. Furthermore, the maize data set consists of clustered observations and, therefore, we develop inference procedures for a zero-inflated CMP regression that incorporates a cluster-specific random effect term. Unlike the Gaussian models, the underlying likelihood is computationally challenging. We use a numerical approximation via a Gaussian quadrature to circumvent this issue. A test for checking zero-inflation has also been developed in our setting. Finite sample properties of our estimators and test have been investigated by extensive simulations. Finally, the statistical methodology has been applied to analyze the maize data mentioned before.  相似文献   

13.
The Poisson distribution is a benchmark for modeling count data. Its equidispersion constraint, however, does not accurately represent real data. Most real datasets express overdispersion; hence attention in the statistics community focuses on associated issues. More examples are surfacing, however, that display underdispersion, warranting the need to highlight this phenomenon and bring more attention to those models that can better describe such data structures. This work addresses various sources of data underdispersion and surveys several distributions that can model underdispersed data, comparing their performance on applied datasets.  相似文献   

14.
In many applications, the clustered count data often contain excess zeros and the zero-inflated generalized Poisson mixed (ZIGPM) regression model may be suitable. However, dispersion in ZIGPM is often treated as fixed unknown parameter, and this assumption may be not appropriate in some situations. In this article, a score test for homogeneity of dispersion parameter in ZIGPM regression model is developed and corresponding test statistic is obtained. Sampling distribution and power of the score test statistic are investigated through Monte Carlo simulation. Finally, results from a biological example illustrate the usefulness of the diagnostic statistic.  相似文献   

15.
Real count data time series often show the phenomenon of the underdispersion and overdispersion. In this paper, we develop two extensions of the first-order integer-valued autoregressive process with Poisson innovations, based on binomial thinning, for modeling integer-valued time series with equidispersion, underdispersion, and overdispersion. The main properties of the models are derived. The methods of conditional maximum likelihood, Yule–Walker, and conditional least squares are used for estimating the parameters, and their asymptotic properties are established. We also use a test based on our processes for checking if the count time series considered is overdispersed or underdispersed. The proposed models are fitted to time series of the weekly number of syphilis cases and monthly counts of family violence illustrating its capabilities in challenging the overdispersed and underdispersed count data.  相似文献   

16.
This note discusses an extension to the score test statistics for overdispersion in Poisson and binomial regression models [Dean, C.B., 1992. Testing for overdispersion in Poisson and binomial regression models. J. Amer. Statist. Assoc. 87, 451–457]. Examples illustrate the application of the extended results.  相似文献   

17.
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression.  相似文献   

18.
Hall (2000) has described zero‐inflated Poisson and binomial regression models that include random effects to account for excess zeros and additional sources of heterogeneity in the data. The authors of the present paper propose a general score test for the null hypothesis that variance components associated with these random effects are zero. For a zero‐inflated Poisson model with random intercept, the new test reduces to an alternative to the overdispersion test of Ridout, Demério & Hinde (2001). The authors also examine their general test in the special case of the zero‐inflated binomial model with random intercept and propose an overdispersion test in that context which is based on a beta‐binomial alternative.  相似文献   

19.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

20.
Non-Gaussian outcomes are often modeled using members of the so-called exponential family. The Poisson model for count data falls within this tradition. The family in general, and the Poisson model in particular, are at the same time convenient since mathematically elegant, but in need of extension since often somewhat restrictive. Two of the main rationales for existing extensions are (1) the occurrence of overdispersion, in the sense that the variability in the data is not adequately captured by the model's prescribed mean-variance link, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject, recording information from various members of the same family, etc. There is a variety of overdispersion models for count data, such as, for example, the negative-binomial model. Hierarchies are often accommodated through the inclusion of subject-specific, random effects. Though not always, one conventionally assumes such random effects to be normally distributed. While both of these issues may occur simultaneously, models accommodating them at once are less than common. This paper proposes a generalized linear model, accommodating overdispersion and clustering through two separate sets of random effects, of gamma and normal type, respectively. This is in line with the proposal by Booth et al. (Stat Model 3:179-181, 2003). The model extends both classical overdispersion models for count data (Breslow, Appl Stat 33:38-44, 1984), in particular the negative binomial model, as well as the generalized linear mixed model (Breslow and Clayton, J Am Stat Assoc 88:9-25, 1993). Apart from model formulation, we briefly discuss several estimation options, and then settle for maximum likelihood estimation with both fully analytic integration as well as hybrid between analytic and numerical integration. The latter is implemented in the SAS procedure NLMIXED. The methodology is applied to data from a study in epileptic seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号