首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The distributions of linear combinations, products and ratios of random variables arise in many areas of engineering. In this paper, the exact distributions of the linear combination α XY, the product |X Y| and the ratio |X/Y| are derived when X and Y are independent Laplace random variables. The Laplace distribution, being the oldest model for continuous data, has been one of the most popular models for measurement errors in engineering.  相似文献   

2.
Laplace distributions are becoming increasingly popular models in economics and finance. In this note, the exact distribution of the ratio Z=|X/Y| is derived when X and Y are independent Laplace random variables. This distribution arises when one is interested in comparing the performances of two economic or financial entities. We consider estimation issues of the distribution and illustrate an application for consumer price indices from the six major economics. Several computer programs are given for implementation of the methods used.  相似文献   

3.
The distribution of linear combinations of random variables arises explicitly in many areas of engineering. This has increased the need to have available the widest possible range of statistical results on linear combinations of random variables. In this note, the exact distribution of the linear combination α XY is derived when X and Y are Laplace and logistic random variables distributed independently of each other. Extensive tabulations of the associated percentage points obtained by inverting the derived distribution are also given.  相似文献   

4.
A basic concept for comparing spread among probability distributions is that of dispersive ordering. Let X and Y be two random variables with distribution functions F and G, respectively. Let F −1 and G −1 be their right continuous inverses (quantile functions). We say that Y is less dispersed than X (Y≤ disp X) if G −1(β)−G −1(α)≤F −1(β)−F −1(α), for all 0<α≤β<1. This means that the difference between any two quantiles of G is smaller than the difference between the corresponding quantiles of F. A consequence of Y≤ disp X is that |Y 1Y 2| is stochastically smaller than |X 1X 2| and this in turn implies var(Y)var(X) as well as E[|Y 1Y 2|]≤E[|X 1X 2|], where X 1, X 2 (Y 1, Y 2) are two independent copies of X(Y). In this review paper, we give several examples and applications of dispersive ordering in statistics. Examples include those related to order statistics, spacings, convolution of non-identically distributed random variables and epoch times of non-homogeneous Poisson processes. This work was supported in part by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Subhash Kochar is thankful to Dr. B. Khaledi for many helpful discussions.  相似文献   

5.
The exact distribution of the linear combination α X + β Y is derived when X and Y are normal and logistic random variables distributed independently of each other. Tabulations of the associated percentage points are given along with a computer program to generate them. This work is motivated by problems in reliability engineering.  相似文献   

6.
In the literature, assuming independence of random variables X and Y, statistical estimation of the stress–strength parameter R = P(X > Y) is intensively investigated. However, in some real applications, the strength variable X could be highly dependent on the stress variable Y. In this paper, unlike the common practice in the literature, we discuss on estimation of the parameter R where more realistically X and Y are dependent random variables distributed as bivariate Rayleigh model. We derive the Bayes estimates and highest posterior density credible intervals of the parameters using suitable priors on the parameters. Because there are not closed forms for the Bayes estimates, we will use an approximation based on Laplace method and a Markov Chain Monte Carlo technique to obtain the Bayes estimate of R and unknown parameters. Finally, simulation studies are conducted in order to evaluate the performances of the proposed estimators and analysis of two data sets are provided.  相似文献   

7.
A closed-form representation of the distribution function of the ratio of two linear combinations of Chi-squared variables is derived. The ratio is of the following form R = (X + aY)/(bY + Z), where X, Y, Z are independent Chi-square variables and a, b > 0. Two methods of obtaining the distribution function of this ratio are used. The exact density function of such a ratio is then obtained by differentiation. Two numerical examples are provided.  相似文献   

8.
The distributions of the product and ratio of independent random variables arise in many applied problems. These have been extensively studied by many researchers. In this paper, the distributions of the product | XY | and ratio have been derived, when X and Y are Maxwell and Rayleigh random variables and are distributed independently of each other. The associated cdfs, pdfs, kth moments, entropies, etc., have been given. To describe the possible shapes of the associated pdfs and entropies, the respective plots are provided. The percentage points associated with the cdfs of the product and ratio have been tabulated.  相似文献   

9.
Let X and Y have two-parameter Burr XII distributions. The maximum-likelihood estimator of δ=P(X<Y) is studied under the progressively first failure-censored samples. Three confidence intervals of δ are constructed by using an asymptotic distribution of the maximum-likelihood estimator of δ and two bootstrapping procedures, respectively. Some computational results from intensive simulations are presented. An illustrative example is provided to demonstrate the application of the proposed method.  相似文献   

10.
In this study, the performances of linear regression techniques, which are especially used in clinical chemistry in method comparison studies, are compared via the Monte-Carlo simulation. The regression techniques that take the measurement errors of both dependent and independent variables into account are called Type II regression techniques. In this study, we also compare the performances of Type II and Type I (classical regression techniques that do not take the measurement errors of the independent variable into account) regression techniques for different sample sizes and different shape parameters of the Weibull distribution. The mean square error is used as a performance criterion of each technique. MATLAB 7.02 software is used in the simulation study. As a result, in all conditions, the ordinary least-square (OLS)-bisector regression technique, which bisects the OLS(Y | X) and the OLS(X | Y), shows the best performance.  相似文献   

11.
With a view to estimating the energy consumption, we derive the explicit distribution of the proportion X/(X + Y) when X and Y follow the new Bivariate Affine-Linear Exponential distribution. An application of this distribution to model the proportion of heating using the heating degree day and the cooling degree day data in the State of Alabama for Appalachian Mountain is provided. Using intensive computations based on R-program, tabulation of some quantiles associated with this particular distribution of proportion is also provided, which is quite useful in estimating the proportion of energy required to heat a building.  相似文献   

12.
DISTRIBUTIONAL CHARACTERIZATIONS THROUGH SCALING RELATIONS   总被引:2,自引:0,他引:2  
Investigated here are aspects of the relation between the laws of X and Y where X is represented as a randomly scaled version of Y. In the case that the scaling has a beta law, the law of Y is expressed in terms of the law of X. Common continuous distributions are characterized using this beta scaling law, and choosing the distribution function of Y as a weighted version of the distribution function of X, where the weight is a power function. It is shown, without any restriction on the law of the scaling, but using a one‐parameter family of weights which includes the power weights, that characterizations can be expressed in terms of known results for the power weights. Characterizations in the case where the distribution function of Y is a positive power of the distribution function of X are examined in two special cases. Finally, conditions are given for existence of inverses of the length‐bias and stationary‐excess operators.  相似文献   

13.
We consider the problem of estimating R=P(Y<X) when X and Y are independent Burr-type X random variables. We assume that the sample from each population contains one spurious observation. Bayes estimates are derived for exchangeable and identifiable cases. Monte Carlo simulation is carried out to compare the bias and the expected loss of R.  相似文献   

14.
Algorithms for the computation of bivariate and trivariate normal and t probabilities for rectangles are reviewed. The algorithms use numerical integration to approximate transformed probability distribution integrals. A generalization of Plackett's formula is derived for bivariate and trivariate t probabilities. New methods are described for the numerical computation of bivariate and trivariate t probabilities. Test results are provided, along with recommendations for the most efficient algorithms for single and double precision computations.  相似文献   

15.
Let X1…, Xm and Y1…, Yn be two independent sequences of i.i.d. random variables with distribution functions Fx(.|θ) and Fy(. | φ) respectively. Let g(θ, φ) be a real-valued function of the unknown parameters θ and φ. The purpose of this paper is to suggest a sequential procedure which gives a fixed-width confidence interval for g(θ, φ) so that the coverage probability is approximately α (preas-signed). Certain asymptotic optimality properties of the sequential procedure are established. A Monte Carlo study is presented.  相似文献   

16.
Consider a two-dimensional discrete random variable (X, Y) with possible values 1, 2, …, I for X and 1, 2, …, J for Y. For specifying the distribution of (X, Y), suppose both conditional distributions, of X given Y and of Y given X, are provided. Under this setting, we present here different ways of measuring discrepancy between incompatible conditional distributions in the finite discrete case. In the process, we also suggest different ways of defining the most nearly compatible distributions in incompatible cases. Many new divergence measures are discussed along with those that are already known for determining the most nearly compatible joint distribution P. Finally, a comparative study is carried out between all these divergence measures as some examples.  相似文献   

17.
Let X and Y follow independent Burr type XII distributions, which share a common inner shape parameter. The maximum likelihood estimator of the parameter δ = P(X < Y) is studied based on record samples. The existence and uniqueness of the maximum likelihood estimator of δ based on record samples are established. When the inner shape parameter is known, an exact confidence interval of δ is derived; otherwise, the Fisher information matrix and two bootstrap methods are used to obtain three approximate confidence intervals of δ. The performances of the proposed methods are evaluated via Monte Carlo simulation. Two examples are provided for illustration.  相似文献   

18.
Abstract

In this article, dependence structure of a class of symmetric distributions is considered. Let X and Y be two n-dimensional random vectors having such distributions. We investigate conditions on the generators of densities of X and Y such that X is MTP2, and X and Y can be compared in the multivariate likelihood ratio order. Nonnegativity of the covariance between functions of two adjacent order statistics of X is also given.  相似文献   

19.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

20.
If X and Y are gamma distributed independent random variables then it is well known that the ratio X / (X + Y) has the beta distribution. In this note, the distribution of W = X / (X + Y) is considered when X and Y have the compound gamma distribution. We refer to the distribution of W as compound beta and describe an application to consumer price indices to show that compound beta is a better model than one based on the standard beta distribution. We derive various properties of W, including its probability density function, cumulative distribution function, hazard rate function and moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号