首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
2.
We use a Bayesian multivariate time series model for the analysis of the dynamics of carbon monoxide atmospheric concentrations. The data are observed at four sites. It is assumed that the logarithm of the observed process can be represented as the sum of unobservable components: a trend, a daily periodicity, a stationary autoregressive signal and an erratic term. Bayesian analysis is performed via Gibbs sampling. In particular, we consider the problem of joint temporal prediction when data are observed at a few sites and it is not possible to fit a complex space–time model. A retrospective analysis of the trend component is also given, which is important in that it explains the evolution of the variability in the observed process.  相似文献   

3.
Hierarchical spatio-temporal models allow for the consideration and estimation of many sources of variability. A general spatio-temporal model can be written as the sum of a spatio-temporal trend and a spatio-temporal random effect. When spatial locations are considered to be homogeneous with respect to some exogenous features, the groups of locations may share a common spatial domain. Differences between groups can be highlighted both in the large-scale, spatio-temporal component and in the spatio-temporal dependence structure. When these differences are not included in the model specification, model performance and spatio-temporal predictions may be weak. This paper proposes a method for evaluating and comparing models that progressively include group differences. Hierarchical modeling under a Bayesian perspective is followed, allowing flexible models and the statistical assessment of results based on posterior predictive distributions. This procedure is applied to tropospheric ozone data in the Italian Emilia–Romagna region for 2001, where 30 monitoring sites are classified according to environmental laws into two groups by their relative position with respect to traffic emissions.  相似文献   

4.
5.
Summary. We describe a model-based approach to analyse space–time surveillance data on meningococcal disease. Such data typically comprise a number of time series of disease counts, each representing a specific geographical area. We propose a hierarchical formulation, where latent parameters capture temporal, seasonal and spatial trends in disease incidence. We then add—for each area—a hidden Markov model to describe potential additional (autoregressive) effects of the number of cases at the previous time point. Different specifications for the functional form of this autoregressive term are compared which involve the number of cases in the same or in neighbouring areas. The two states of the Markov chain can be interpreted as representing an 'endemic' and a 'hyperendemic' state. The methodology is applied to a data set of monthly counts of the incidence of meningococcal disease in the 94 départements of France from 1985 to 1997. Inference is carried out by using Markov chain Monte Carlo simulation techniques in a fully Bayesian framework. We emphasize that a central feature of our model is the possibility of calculating—for each region and each time point—the posterior probability of being in a hyperendemic state, adjusted for global spatial and temporal trends, which we believe is of particular public health interest.  相似文献   

6.
As the discipline of functional neuroimaging grows there is an increasing interest in meta analysis of brain imaging studies. A typical neuroimaging meta analysis collects peak activation coordinates (foci) from several studies and identifies areas of consistent activation. Most imaging meta analysis methods only produce null hypothesis inferences and do not provide an interpretable fitted model. To overcome these limitations, we propose a Bayesian spatial hierarchical model using a marked independent cluster process. We model the foci as offspring of a latent study center process, and the study centers are in turn offspring of a latent population center process. The posterior intensity function of the population center process provides inference on the location of population centers, as well as the inter-study variability of foci about the population centers. We illustrate our model with a meta analysis consisting of 437 studies from 164 publications, show how two subpopulations of studies can be compared and assess our model via sensitivity analyses and simulation studies. Supplemental materials are available online.  相似文献   

7.
Dynamic models for spatiotemporal data   总被引:1,自引:0,他引:1  
We propose a model for non-stationary spatiotemporal data. To account for spatial variability, we model the mean function at each time period as a locally weighted mixture of linear regressions. To incorporate temporal variation, we allow the regression coefficients to change through time. The model is cast in a Gaussian state space framework, which allows us to include temporal components such as trends, seasonal effects and autoregressions, and permits a fast implementation and full probabilistic inference for the parameters, interpolations and forecasts. To illustrate the model, we apply it to two large environmental data sets: tropical rainfall levels and Atlantic Ocean temperatures.  相似文献   

8.
We study how different prior assumptions on the spatially structured heterogeneity term of the convolution hierarchical Bayesian model for spatial disease data could affect the results of an ecological analysis when response and exposure exhibit a strong spatial pattern. We show that in this case the estimate of the regression parameter could be strongly biased, both by analyzing the association between lung cancer mortality and education level on a real dataset and by a simulation experiment. The analysis is based on a hierarchical Bayesian model with a time dependent covariate in which we allow for a latency period between exposure and mortality, with time and space random terms and misaligned exposure-disease data.  相似文献   

9.
We propose a general latent variable model for multivariate ordinal categorical variables, in which both the responses and the covariates are ordinal, to assess the effect of the covariates on the responses and to model the covariance structure of the response variables. A?fully Bayesian approach is employed to analyze the model. The Gibbs sampler is used to simulate the joint posterior distribution of the latent variables and the parameters, and the parameter expansion and reparameterization techniques are used to speed up the convergence procedure. The proposed model and method are demonstrated by simulation studies and a real data example.  相似文献   

10.
Recent changes in European family dynamics are often linked to common latent trends of economic and ideational change. Using Bayesian factor analysis, we extract three latent variables from eight socio-demographic indicators related to family formation, dissolution, and gender system and collected on 19 European countries within four periods (1970, 1980, 1990, 1998). The flexibility of the Bayesian approach allows us to introduce an innovative temporal factor model, adding the temporal dimension to the traditional factorial analysis. The underlying structure of the Bayesian factor model proposed reflects our idea of an autoregressive pattern in the latent variables relative to adjacent time periods. The results we obtain are consistent with current interpretations in European demographic trends.  相似文献   

11.
In this paper, we propose a multivariate growth curve mixture model that groups subjects based on multiple symptoms measured repeatedly over time. Our model synthesizes features of two models. First, we follow Roy and Lin (2000) in relating the multiple symptoms at each time point to a single latent variable. Second, we use the growth mixture model of Muthén and Shedden (1999) to group subjects based on distinctive longitudinal profiles of this latent variable. The mean growth curve for the latent variable in each class defines that class's features. For example, a class of "responders" would have a decline in the latent symptom summary variable over time. A Bayesian approach to estimation is employed where the methods of Elliott et al (2005) are extended to simultaneously estimate the posterior distributions of the parameters from the latent variable and growth curve mixture portions of the model. We apply our model to data from a randomized clinical trial evaluating the efficacy of Bacillus Calmette-Guerin (BCG) in treating symptoms of Interstitial Cystitis. In contrast to conventional approaches using a single subjective Global Response Assessment, we use the multivariate symptom data to identify a class of subjects where treatment demonstrates effectiveness. Simulations are used to confirm identifiability results and evaluate the performance of our algorithm. The definitive version of this paper is available at onlinelibrary.wiley.com.  相似文献   

12.
To model extreme spatial events, a general approach is to use the generalized extreme value (GEV) distribution with spatially varying parameters such as spatial GEV models and latent variable models. In the literature, this approach is mostly used to capture spatial dependence for only one type of event. This limits the applications to air pollutants data as different pollutants may chemically interact with each other. A recent advancement in spatial extremes modelling for multiple variables is the multivariate max-stable processes. Similarly to univariate max-stable processes, the multivariate version also assumes standard distributions such as unit-Fréchet as margins. Additional modelling is required for applications such as spatial prediction. In this paper, we extend the marginal methods such as spatial GEV models and latent variable models into a multivariate setting based on copulas so that it is capable of handling both the spatial dependence and the dependence among multiple pollutants. We apply our proposed model to analyse weekly maxima of nitrogen dioxide, sulphur dioxide, respirable suspended particles, fine suspended particles, and ozone collected in Pearl River Delta in China.  相似文献   

13.
The autologistic model, first introduced by Besag, is a popular tool for analyzing binary data in spatial lattices. However, no investigation was found to consider modeling of binary data clustered in uncorrelated lattices. Owing to spatial dependency of responses, the exact likelihood estimation of parameters is not possible. For circumventing this difficulty, many studies have been designed to approximate the likelihood and the related partition function of the model. So, the traditional and Bayesian estimation methods based on the likelihood function are often time-consuming and require heavy computations and recursive techniques. Some investigators have introduced and implemented data augmentation and latent variable model to reduce computational complications in parameter estimation. In this work, the spatially correlated binary data distributed in uncorrelated lattices were modeled using autologistic regression, a Bayesian inference was developed with contribution of data augmentation and the proposed models were applied to caries experiences of deciduous dents.  相似文献   

14.
The Net Ecosystem Exchange describes the net carbon dioxide flux between an ecosystem and the atmosphere and is a key quantity in climate change studies and in political negotiations. This paper provides a spatio-temporal statistical framework, which is able to infer the Net Ecosystem Exchange from remotely-sensed carbon dioxide ground concentrations together with data on the Normalized Difference Vegetation Index, the Gross Primary Production and the land cover classification. The model is based on spatial and temporal latent random effects, that act as space–time varying coefficients, which allows for a flexible modeling of the spatio-temporal auto- and cross-correlation structure. The intra- and inter-annual variations of the Net Ecosystem Exchange are evaluated and dynamic maps are provided on a nearly global grid and in intervals of 16 days.  相似文献   

15.
了解城市道路交通流的时空特性有助于提高交通流的预测精度。基于实测的车牌识别数据,运用相似系数、快速傅氏变换和混沌理论分析交通流相似性、周期性和混沌性的时间特性;运用相关系数及互相关函数作为度量标准对交通流空间特性进行描述,论证交通流检测断面之间存在空间相互作用并具有时滞性;根据交通流的空间相关性,使用多维标度法对实际路网中检测断面进行聚类和分组,为交通流预测中的多断面分组以及构建交通流时空预测模型提供理论基础。  相似文献   

16.
This article presents a Bayesian latent variable model used to analyze ordinal response survey data by taking into account the characteristics of respondents. The ordinal response data are viewed as multivariate responses arising from continuous latent variables with known cut-points. Each respondent is characterized by two parameters that have a Dirichlet process as their joint prior distribution. The proposed mechanism adjusts for classes of personalities. The model is applied to student survey data in course evaluations. Goodness-of-fit (GoF) procedures are developed for assessing the validity of the model. The proposed GoF procedures are simple, intuitive, and do not seem to be a part of current Bayesian practice.  相似文献   

17.
Summary.  Short-term forecasts of air pollution levels in big cities are now reported in news-papers and other media outlets. Studies indicate that even short-term exposure to high levels of an air pollutant called atmospheric particulate matter can lead to long-term health effects. Data are typically observed at fixed monitoring stations throughout a study region of interest at different time points. Statistical spatiotemporal models are appropriate for modelling these data. We consider short-term forecasting of these spatiotemporal processes by using a Bayesian kriged Kalman filtering model. The spatial prediction surface of the model is built by using the well-known method of kriging for optimum spatial prediction and the temporal effects are analysed by using the models underlying the Kalman filtering method. The full Bayesian model is implemented by using Markov chain Monte Carlo techniques which enable us to obtain the optimal Bayesian forecasts in time and space. A new cross-validation method based on the Mahalanobis distance between the forecasts and observed data is also developed to assess the forecasting performance of the model implemented.  相似文献   

18.
High levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, but the exact nature of the dose-response relationship is less well understood. To investigate this relationship, data were assembled from six longitudinal birth cohort studies examining the effects of PAE on cognitive outcomes from early school age through adolescence. Structural equation models (SEMs) are a natural approach to consider, because of the way they conceptualise multiple observed outcomes as relating to an underlying latent variable of interest, which can then be modelled as a function of exposure and other predictors of interest. However, conventional SEMs could not be fitted in this context because slightly different outcome measures were used in the six studies. In this paper we propose a multi-group Bayesian SEM that maps the unobserved cognition variable to a broad range of observed outcomes. The relation between these variables and PAE is then examined while controlling for potential confounders via propensity score adjustment. By examining different possible dose-response functions, the proposed framework is used to investigate whether there is a threshold PAE level that results in minimal cognitive deficit.  相似文献   

19.
We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi‐subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix‐variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide‐and‐conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike‐and‐slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio‐temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi‐subject EEG data.  相似文献   

20.
We propose a latent variable model for informative missingness in longitudinal studies which is an extension of latent dropout class model. In our model, the value of the latent variable is affected by the missingness pattern and it is also used as a covariate in modeling the longitudinal response. So the latent variable links the longitudinal response and the missingness process. In our model, the latent variable is continuous instead of categorical and we assume that it is from a normal distribution. The EM algorithm is used to obtain the estimates of the parameter we are interested in and Gauss–Hermite quadrature is used to approximate the integration of the latent variable. The standard errors of the parameter estimates can be obtained from the bootstrap method or from the inverse of the Fisher information matrix of the final marginal likelihood. Comparisons are made to the mixed model and complete-case analysis in terms of a clinical trial dataset, which is Weight Gain Prevention among Women (WGPW) study. We use the generalized Pearson residuals to assess the fit of the proposed latent variable model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号