首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Monte Carlo exact conditional test of quasi-independence in two-way incomplete contingency tables is proposed. The null distribution of a random table under quasiindependence is derived. This distribution depends only on the counts in the cells of interest and not on the counts in the remaining cells. This result is used to improve the efficiency of a proposed simulate-and-reject Monte Carlo procedure for estimating the attained significance level.  相似文献   

2.
We develop a Markov chain Monte Carlo algorithm, based on ‘stochastic search variable selection’ (George and McCuUoch, 1993), for identifying promising log-linear models. The method may be used in the analysis of multi-way contingency tables where the set of plausible models is very large.  相似文献   

3.
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305–320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom.  相似文献   

4.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

5.
We consider conditional exact tests of factor effects in design of experiments for discrete response variables. Similarly to the analysis of contingency tables, Markov chain Monte Carlo methods can be used to perform exact tests, especially when large-sample approximations of the null distributions are poor and the enumeration of the conditional sample space is infeasible. In order to construct a connected Markov chain over the appropriate sample space, one approach is to compute a Markov basis. Theoretically, a Markov basis can be characterized as a generator of a well-specified toric ideal in a polynomial ring and is computed by computational algebraic software. However, the computation of a Markov basis sometimes becomes infeasible, even for problems of moderate sizes. In the present article, we obtain the closed-form expression of minimal Markov bases for the main effect models of 2p ? 1 fractional factorial designs of resolution p.  相似文献   

6.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

7.
We consider conditional exact tests of factor effects in designed experiments for discrete response variables. Similarly to the analysis of contingency tables, a Markov chain Monte Carlo method can be used for performing exact tests, when large-sample approximations are poor and the enumeration of the conditional sample space is infeasible. For designed experiments with a single observation for each run, we formulate log-linear or logistic models and consider a connected Markov chain over an appropriate sample space. In particular, we investigate fractional factorial designs with 2p-q2p-q runs, noting correspondences to the models for 2p-q2p-q contingency tables.  相似文献   

8.
We consider testing the quasi-independence hypothesis for two-way contingency tables which contain some structural zero cells. For sparse contingency tables where the large sample approximation is not adequate, the Markov chain Monte Carlo exact tests are powerful tools. To construct a connected chain over the two-way contingency tables with fixed sufficient statistics and an arbitrary configuration of structural zero cells, an algebraic algorithm proposed by Diaconis and Sturmfels [Diaconis, P. and Sturmfels, B. (1998). The Annals of statistics, 26, pp. 363–397.] can be used. However, their algorithm does not seem to be a satisfactory answer, because the Markov basis produced by the algorithm often contains many redundant elements and is hard to interpret. We derive an explicit characterization of a minimal Markov basis, prove its uniqueness, and present an algorithm for obtaining the unique minimal basis. A computational example and the discussion on further basis reduction for the case of positive sufficient statistics are also given.  相似文献   

9.
Using the concept of distributional distance, a test statistic is proposed FOR the hypothesis of independence in multidimensional contingency tables. A Monte Carlo Study is done to empirically compare the power of the proposed test to the Pearson x2 and the likelihood ratio test- Further, the nonnull distribution under various spike alternatives is tabulated  相似文献   

10.
Summary. A major difficulty in meta-analysis is publication bias . Studies with positive outcomes are more likely to be published than studies reporting negative or inconclusive results. Correcting for this bias is not possible without making untestable assumptions. In this paper, a sensitivity analysis is discussed for the meta-analysis of 2×2 tables using exact conditional distributions. A Markov chain Monte Carlo EM algorithm is used to calculate maximum likelihood estimates. A rule for increasing the accuracy of estimation and automating the choice of the number of iterations is suggested.  相似文献   

11.
The Friedman's test is used for assessing the independence of repeated experiments resulting in ranks, summarized as a table of integer entries ranging from 1 to k, with k columns and N rows. For its practical use, the hypothesis testing can be derived either from published tables with exact values for small k and N, or using an asymptotic analytical approximation valid for large N or large k. The quality of the approximation, measured as the relative difference of the true critical values with respect those arising from the asymptotic approximation is simply not known. The literature review shows cases where the wrong conclusion could have been drawn using it, although it may not be the only cause of opposite decisions. By Monte Carlo simulation we conclude that published tables do not cover a large enough set of (k, N) values to assure adequate accuracy. Our proposal is to systematically extend existing tables for k and N values, so that using the analytical approximation for values outside it will have less than a prescribed relative error. For illustration purposes some of the tables have been included in the paper, but the complete set is presented as a source code valid for Octave/Matlab/Scilab etc., and amenable to be ported to other programming languages.  相似文献   

12.
Conventional procedures for Monte Carlo and bootstrap tests require that B, the number of simulations, satisfy a specific relationship with the level of the test. Otherwise, a test that would instead be exact will either overreject or underreject for finite B. We present expressions for the rejection frequencies associated with existing procedures and propose a new procedure that yields exact Monte Carlo tests for any positive value of B. This procedure, which can also be used for bootstrap tests, is likely to be most useful when simulation is expensive.  相似文献   

13.
In statistical models involving constrained or missing data, likelihoods containing integrals emerge. In the case of both constrained and missing data, the result is a ratio of integrals, which for multivariate data may defy exact or approximate analytic expression. Seeking maximum-likelihood estimates in such settings, we propose Monte Carlo approximants for these integrals, and subsequently maximize the resulting approximate likelihood. Iteration of this strategy expedites the maximization, while the Gibbs sampler is useful for the required Monte Carlo generation. As a result, we handle a class of models broader than the customary EM setting without using an EM-type algorithm. Implementation of the methodology is illustrated in two numerical examples.  相似文献   

14.
Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample from these distributions using a sequential Monte Carlo approach. We demonstrate state-of-the-art performance for several applications of the proposed approach.  相似文献   

15.
This paper considers a connected Markov chain for sampling 3 × 3 ×K contingency tables having fixed two‐dimensional marginal totals. Such sampling arises in performing various tests of the hypothesis of no three‐factor interactions. A Markov chain algorithm is a valuable tool for evaluating P‐values, especially for sparse datasets where large‐sample theory does not work well. To construct a connected Markov chain over high‐dimensional contingency tables with fixed marginals, algebraic algorithms have been proposed. These algorithms involve computations in polynomial rings using Gröbner bases. However, algorithms based on Gröbner bases do not incorporate symmetry among variables and are very time‐consuming when the contingency tables are large. We construct a minimal basis for a connected Markov chain over 3 × 3 ×K contingency tables. The minimal basis is unique. Some numerical examples illustrate the practicality of our algorithms.  相似文献   

16.
Bayesian models for relative archaeological chronology building   总被引:1,自引:0,他引:1  
For many years, archaeologists have postulated that the numbers of various artefact types found within excavated features should give insight about their relative dates of deposition even when stratigraphic information is not present. A typical data set used in such studies can be reported as a cross-classification table (often called an abundance matrix or, equivalently, a contingency table) of excavated features against artefact types. Each entry of the table represents the number of a particular artefact type found in a particular archaeological feature. Methodologies for attempting to identify temporal sequences on the basis of such data are commonly referred to as seriation techniques. Several different procedures for seriation including both parametric and non-parametric statistics have been used in an attempt to reconstruct relative chronological orders on the basis of such contingency tables. We develop some possible model-based approaches that might be used to aid in relative, archaeological chronology building. We use the recently developed Markov chain Monte Carlo method based on Langevin diffusions to fit some of the models proposed. Predictive Bayesian model choice techniques are then employed to ascertain which of the models that we develop are most plausible. We analyse two data sets taken from the literature on archaeological seriation.  相似文献   

17.
Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.  相似文献   

18.
In this paper, I explore the usage of positive definite metric tensors derived from the second derivative information in the context of the simplified manifold Metropolis adjusted Langevin algorithm. I propose a new adaptive step size procedure that resolves the shortcomings of such metric tensors in regions where the log‐target has near zero curvature in some direction. The adaptive step size selection also appears to alleviate the need for different tuning parameters in transient and stationary regimes that is typical of Metropolis adjusted Langevin algorithm. The combination of metric tensors derived from the second derivative information and the adaptive step size selection constitute a large step towards developing reliable manifold Markov chain Monte Carlo methods that can be implemented automatically for models with unknown or intractable Fisher information, and even for target distributions that do not admit factorization into prior and likelihood. Through examples of low to moderate dimension, I show that the proposed methodology performs very well relative to alternative Markov chain Monte Carlo methods.  相似文献   

19.
Pricing options is an important problem in financial engineering. In many scenarios of practical interest, financial option prices associated with an underlying asset reduces to computing an expectation w.r.t. a diffusion process. In general, these expectations cannot be calculated analytically, and one way to approximate these quantities is via the Monte Carlo (MC) method; MC methods have been used to price options since at least the 1970s. It has been seen in Del Moral P, Shevchenko PV. [Valuation of barrier options using sequential Monte Carlo. 2014. arXiv preprint] and Jasra A, Del Moral P. [Sequential Monte Carlo methods for option pricing. Stoch Anal Appl. 2011;29:292–316] that Sequential Monte Carlo (SMC) methods are a natural tool to apply in this context and can vastly improve over standard MC. In this article, in a similar spirit to Del Moral and Shevchenko (2014) and Jasra and Del Moral (2011), we show that one can achieve significant gains by using SMC methods by constructing a sequence of artificial target densities over time. In particular, we approximate the optimal importance sampling distribution in the SMC algorithm by using a sequence of weighting functions. This is demonstrated on two examples, barrier options and target accrual redemption notes (TARNs). We also provide a proof of unbiasedness of our SMC estimate.  相似文献   

20.
Summary.  We deal with contingency table data that are used to examine the relationships between a set of categorical variables or factors. We assume that such relationships can be adequately described by the cond`itional independence structure that is imposed by an undirected graphical model. If the contingency table is large, a desirable simplified interpretation can be achieved by combining some categories, or levels, of the factors. We introduce conditions under which such an operation does not alter the Markov properties of the graph. Implementation of these conditions leads to Bayesian model uncertainty procedures based on reversible jump Markov chain Monte Carlo methods. The methodology is illustrated on a 2×3×4 and up to a 4×5×5×2×2 contingency table.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号