首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatiotemporal data, the estimation methods based on least-squares (L2) method will not perform well. More robust estimation methods are required. In this article, we propose the local linear estimation for spatiotemporal models based on least absolute deviation (L1) and drive the asymptotic distributions of the L1-estimators under some mild conditions imposed on the spatiotemporal process. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L1-estimators perform better than the L2-estimators.  相似文献   

2.
The resistance of least absolute values (L1) estimators to outliers and their robustness to heavy-tailed distributions make these estimators useful alternatives to the usual least squares estimators. The recent development of efficient algorithms for L1 estimation in linear models has permitted their use in practical data analysis. Although in general the L1 estimators are not unique, there are a number of properties they all share. The set of all L1 estimators for a given model and data set can be characterized as the convex hull of some extreme estimators. Properties of the extreme estimators and of the L1-estimate set are considered.  相似文献   

3.
We consider the properties of the trimmed mean, as regards minimax-variance L-estimation of a location parameter in a Kolmogorov neighbourhood K() of the normal distribution: We first review some results on the search for an L-minimax estimator in this neighbourhood, i.e. a linear combination of order statistics whose maximum variance in Kt() is a minimum in the class of L-estimators. The natural candidate – the L-estimate which is efficient for that member of Kt,() with minimum Fisher information – is known not to be a saddlepoint solution to the minimax problem. We show here that it is not a solution at all. We do this by showing that a smaller maximum variance is attained by an appropriately trimmed mean. We argue that this trimmed mean, as well as being computationally simple – much simpler than the efficient L-estimate referred to above, and simpler than the minimax M- and R-estimators – is at least “nearly” minimax.  相似文献   

4.
We consider the asymptotic behaviour of L1 -estimators in a linear regression under a very general form of heteroscedasticity. The limiting distributions of the estimators are derived under standard conditions on the design. We also consider the asymptotic behaviour of the bootstrap in the heteroscedastic model and show that it is consistent to first order only if the limiting distribution is normal.  相似文献   

5.
We consider the problem of minimax-variance, robust estimation of a location parameter, through the use of L- and R-estimators. We derive an easily checked necessary condition for L-estimation to be minimax, and a related sufficient condition for R-estimation to be minimax. Those cases in the literature in which L-estimation is known not to be minimax, and those in which R-estimation is minimax, are derived as consequences of these conditions. New classes of examples are given in each case. As well, we answer a question of Scholz (1974), who showed essentially that the asymptotic variance of an R-estimator never exceeds that of an L-estimator, if both are efficient at the same strongly unimodal distribution. Scholz raised the question of whether or not the assumption of strong unimodality could be dropped. We answer this question in the negative, theoretically and by examples. In the examples, the minimax property fails both for L-estimation and for R-estimation, but the variance of the L-estimator, as the distribution of the observation varies over the given neighbourhood, remains unbounded. That of the R-estimator is unbounded.  相似文献   

6.
The varying coefficient model (VCM) is an important generalization of the linear regression model and many existing estimation procedures for VCM were built on L 2 loss, which is popular for its mathematical beauty but is not robust to non-normal errors and outliers. In this paper, we address the problem of both robustness and efficiency of estimation and variable selection procedure based on the convex combined loss of L 1 and L 2 instead of only quadratic loss for VCM. By using local linear modeling method, the asymptotic normality of estimation is driven and a useful selection method is proposed for the weight of composite L 1 and L 2. Then the variable selection procedure is given by combining local kernel smoothing with adaptive group LASSO. With appropriate selection of tuning parameters by Bayesian information criterion (BIC) the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the new method is investigated through simulation studies and the analysis of body fat data. Numerical studies show that the new method is better than or at least as well as the least square-based method in terms of both robustness and efficiency for variable selection.  相似文献   

7.
We developed robust estimators that minimize a weighted L1 norm for the first-order bifurcating autoregressive model. When all of the weights are fixed, our estimate is an L1 estimate that is robust against outlying points in the response space and more efficient than the least squares estimate for heavy-tailed error distributions. When the weights are random and depend on the points in the factor space, the weighted L1 estimate is robust against outlying points in the factor space. Simulated and artificial examples are presented. The behavior of the proposed estimate is modeled through a Monte Carlo study.  相似文献   

8.
This article considers a nonparametric varying coefficient regression model with longitudinal observations. The relationship between the dependent variable and the covariates is assumed to be linear at a specific time point, but the coefficients are allowed to change over time. A general formulation is used to treat mean regression, median regression, quantile regression, and robust mean regression in one setting. The local M-estimators of the unknown coefficient functions are obtained by local linear method. The asymptotic distributions of M-estimators of unknown coefficient functions at both interior and boundary points are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are derived. Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

9.
Data-based choice of the bandwidth is an important problem in kernel density estimation. The pseudo-likelihood and the least-squares cross-validation bandwidth selectors are well known, but widely criticized in the literature. For heavy-tailed distributions, the L1 distance between the pseudo-likelihood-based estimator and the density does not seem to converge in probability to zero with increasing sample size. Even for normal-tailed densities, the rate of L1 convergence is disappointingly slow. In this article, we report an interesting finding that with minor modifications both the cross-validation methods can be implemented effectively, even for heavy-tailed densities. For both these estimators, the L1 distance (from the density) are shown to converge completely to zero irrespective of the tail of the density. The expected L1 distance also goes to zero. These results hold even in the presence of a strongly mixing-type dependence. Monte Carlo simulations and analysis of the Old Faithful geyser data suggest that if implemented appropriately, contrary to the traditional belief, the cross-validation estimators compare well with the sophisticated plug-in and bootstrap-based estimators.  相似文献   

10.
In this article, a robust variable selection procedure based on the weighted composite quantile regression (WCQR) is proposed. Compared with the composite quantile regression (CQR), WCQR is robust to heavy-tailed errors and outliers in the explanatory variables. For the choice of the weights in the WCQR, we employ a weighting scheme based on the principal component method. To select variables with grouping effect, we consider WCQR with SCAD-L2 penalization. Furthermore, under some suitable assumptions, the theoretical properties, including the consistency and oracle property of the estimator, are established with a diverging number of parameters. In addition, we study the numerical performance of the proposed method in the case of ultrahigh-dimensional data. Simulation studies and real examples are provided to demonstrate the superiority of our method over the CQR method when there are outliers in the explanatory variables and/or the random error is from a heavy-tailed distribution.  相似文献   

11.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

12.
A robust estimator is developed for Poisson mixture models with a known number of components. The proposed estimator minimizes the L2 distance between a sample of data and the model. When the component distributions are completely known, the estimators for the mixing proportions are in closed form. When the parameters for the component Poisson distributions are unknown, numerical methods are needed to calculate the estimators. Compared to the minimum Hellinger distance estimator, the minimum L2 estimator can be less robust to extreme outliers, and often more robust to moderate outliers.  相似文献   

13.
We derive the AMSE (maximal asymptotic mean-squared-error) of the general class of L-estimators of scale that are location-scale equivariant and Fisher consistent. For non-normal error distributions, we determined estimators that have minimum AMSE over the subclass of (i) α-interquantile ranges and (ii) mixtures of at most two α-interquantile ranges. Finally, the L-estimators of scale symmetrized about the median were found to have the same AMSE as their nonsymmetrized counterparts, thus yielding the same results as in the symmetrized case.  相似文献   

14.
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub-Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.  相似文献   

15.
Robust nonparametric estimators for additive regression or autoregression models under an α-mixing condition are proposed. They are based on local M-estimators or local medians with kernel weights, and their asymptotic behaviour is studied. Moreover, diese local M-estimators achieve the same univariate rate of convergence as their linear relatives.  相似文献   

16.
Ordinary least squares (OLS) is omnipresent in regression modeling. Occasionally, least absolute deviations (LAD) or other methods are used as an alternative when there are outliers. Although some data adaptive estimators have been proposed, they are typically difficult to implement. In this paper, we propose an easy to compute adaptive estimator which is simply a linear combination of OLS and LAD. We demonstrate large sample normality of our estimator and show that its performance is close to best for both light-tailed (e.g. normal and uniform) and heavy-tailed (e.g. double exponential and t 3) error distributions. We demonstrate this through three simulation studies and illustrate our method on state public expenditures and lutenizing hormone data sets. We conclude that our method is general and easy to use, which gives good efficiency across a wide range of error distributions.  相似文献   

17.
A fast routine for converting regression algorithms into corresponding orthogonal regression (OR) algorithms was introduced in Ammann and Van Ness (1988). The present paper discusses the properties of various ordinary and robust OR procedures created using this routine. OR minimizes the sum of the orthogonal distances from the regression plane to the data points. OR has three types of applications. First, L 2 OR is the maximum likelihood solution of the Gaussian errors-in-variables (EV) regression problem. This L 2 solution is unstable, thus the robust OR algorithms created from robust regression algorithms should prove very useful. Secondly, OR is intimately related to principal components analysis. Therefore, the routine can also be used to create L 1, robust, etc. principal components algorithms. Thirdly, OR treats the x and y variables symmetrically which is important in many modeling problems. Using Monte Carlo studies this paper compares the performance of standard regression, robust regression, OR, and robust OR on Gaussian EV data, contaminated Gaussian EV data, heavy-tailed EV data, and contaminated heavy-tailed EV data.  相似文献   

18.
For ergodic ARCH processes, we introduce a one-parameter family of Lp-estimators. The construction is based on the concept of weighted M-estimators. Under weak assumptions on the error distribution, the consistency is established. The asymptotic normality is proved for the special cases p=1 and 2. To prove the asymptotic normality of the L1-estimator, one needs the existence of a density of the squares of the errors, whereas for the L2-estimator the existence of fourth moments is assumed. The asymptotic covariance matrix of the estimator depends on the unknown parameter which can be substituted by consistent estimators. For the L1-estimator we construct a kernel estimator for the unknown density of the square of the errors.  相似文献   

19.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

20.
《随机性模型》2013,29(1):215-234
ABSTRACT

A basic difficulty in dealing with heavy-tailed distributions is that they may not have explicit Laplace transforms. This makes numerical methods that use the Laplace transform more challenging. This paper generalizes an existing method for approximating heavy-tailed distributions, for use in queueing analysis. The generalization involves fitting Chebyshev polynomials to a probability density function g(t) at specified points t 1, t 2, …, t N . By choosing points t i , which rapidly get far out in the tail, it is possible to capture the tail behavior with relatively few points, and to control the relative error in the approximation. We give numerical examples to evaluate the performance of the method in simple queueing problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号