首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider a centered stochastic process {X(t):tT} with known and continuous covariance function. On the basis of observations X(t1), …, X(tn) we approximate the whole path by orthogonal projection and measure the performance of the chosen design d = (t1, …, tn)′ by the corresponding mean squared L2-distance. For covariance functions on T2 = [0, 1]2, which satisfy a generalized Sacks-Ylvisaker regularity condition of order zero, we construct asymptotically optimal sequences of designs. Moreover, we characterize the achievement of a lower error bound, given by Micchelli and Wahba (1981), and study the question of whether this bound can be attained.  相似文献   

2.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, tT, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”).  相似文献   

3.
In this article, we study the joint distribution of X and two linear combinations of order statistics, a T Y (2) and b T Y (2), where a = (a 1, a 2) T and b = (b 1, b 2) T are arbitrary vectors in R 2 and Y (2) = (Y (1), Y (2)) T is a vector of ordered statistics obtained from (Y 1, Y 2) T when (X, Y 1, Y 2) T follows a trivariate normal distribution with a positive definite covariance matrix. We show that this distribution belongs to the skew-normal family and hence our work is a generalization of Olkin and Viana (J Am Stat Assoc 90:1373–1379, 1995) and Loperfido (Test 17:370–380, 2008).  相似文献   

4.
In this paper, by assuming that (X, Y 1, Y 2)T has a trivariate elliptical distribution, we derive the exact joint distribution of X and a linear combination of order statistics from (Y 1, Y 2)T and show that it is a mixture of unified bivariate skew-elliptical distributions. We then derive the corresponding marginal and conditional distributions for the special case of t kernel. We also present these results for an exchangeable case with t kernel and illustrate the established results with an air-pollution data.  相似文献   

5.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

6.
This paper considers the general linear regression model yc = X1β+ut under the heteroscedastic structure E(ut) = 0, E(u2) =σ2- (Xtβ)2, E(ut us) = 0, tæs, t, s= 1, T. It is shown that any estimated GLS estimator for β is asymptotically equivalent to the GLS estimator under some regularity conditions. A three-step GLS estimator, which calls upon the assumption E(ut2) =s?2(X,β)2 for the estimation of the disturbance covariance matrix, is considered.  相似文献   

7.
Suppose that we have a nonparametric regression model Y = m(X) + ε with XRp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0).  相似文献   

8.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

9.
In this paper, we consider, using technique based on Girsanov theorem, the problem of efficient estimation for the drift of subfractional Brownian motion SH ? (SHt)t ∈ [0, T]. We also construct a class of biased estimators of James-Stein type which dominate, under the usual quadratic risk, the natural maximum likelihood estimator.  相似文献   

10.
We propose a robust Kalman filter (RKF) to estimate the true but hidden return when microstructure noise is present. Following Zhou's definition, we assume the observed return Yt is the result of adding microstructure noise to the true but hidden return Xt. Microstructure noise is assumed to be independent and identically distributed (i.i.d.); it is also independent of Xt. When Xt is sampled from a geometric Brownian motion process to yield Yt, the Kalman filter can produce optimal estimates of Xt from Yt. However, the covariance matrix of microstructure noise and that of Xt must be known for this claim to hold. In practice, neither covariance matrix is known so they must be estimated. Our RKF, in contrast, does not need the covariance matrices as input. Simulation results show that the RKF gives essentially identical estimates to the Kalman filter, which has access to the covariance matrices. As applications, estimated Xt can be used to estimate the volatility of Xt.  相似文献   

11.
Consider an inhomogeneous Poisson process X on [0, T] whose unk-nown intensity function “switches” from a lower function g* to an upper function h* at some unknown point ?* that has to be identified. We consider two known continuous functions g and h such that g*(t) ? g(t) < h(t) ? h*(t) for 0 ? t ? T. We describe the behavior of the generalized likelihood ratio and Wald’s tests constructed on the basis of a misspecified model in the asymptotics of large samples. The power functions are studied under local alternatives and compared numerically with help of simulations. We also show the following robustness result: the Type I error rate is preserved even though a misspecified model is used to construct tests.  相似文献   

12.
A Bayesian analysis is provided for the Wilcoxon signed-rank statistic (T+). The Bayesian analysis is based on a sign-bias parameter φ on the (0, 1) interval. For the case of a uniform prior probability distribution for φ and for small sample sizes (i.e., 6 ? n ? 25), values for the statistic T+ are computed that enable probabilistic statements about φ. For larger sample sizes, approximations are provided for the asymptotic likelihood function P(T+|φ) as well as for the posterior distribution P(φ|T+). Power analyses are examined both for properly specified Gaussian sampling and for misspecified non Gaussian models. The new Bayesian metric has high power efficiency in the range of 0.9–1 relative to a standard t test when there is Gaussian sampling. But if the sampling is from an unknown and misspecified distribution, then the new statistic still has high power; in some cases, the power can be higher than the t test (especially for probability mixtures and heavy-tailed distributions). The new Bayesian analysis is thus a useful and robust method for applications where the usual parametric assumptions are questionable. These properties further enable a way to do a generic Bayesian analysis for many non Gaussian distributions that currently lack a formal Bayesian model.  相似文献   

13.
Let {X t , t ∈ ?} be a sequence of iid random variables with an absolutely continuous distribution. Let a > 0 and c ∈ ? be some constants. We consider a sequence of 0-1 valued variables {ξ t , t ∈ ?} obtained by clipping an MA(1) process X t  ? aX t?1 at the level c, i.e., ξ t  = I[X t  ? aX t?1 < c] for all t ∈ ?. We deal with the estimation problem in this model. Properties of the estimators of the parameters a and c, the success probability p, and the 1-lag autocorrelation r 1 are investigated. A numerical study is provided as an illustration of the theoretical results.  相似文献   

14.
《随机性模型》2013,29(1):25-37
For a shot-noise process X(t) with Poisson arrival times and exponentially diminishing shocks of i.i.d. sizes, we consider the first time T b at which a given level b > 0 is exceeded. An integral equation for the joint density of T b and X(T b ) is derived and, for the case of exponential jumps, solved explicitly in terms of Laplace transforms (LTs). In the general case we determine the ordinary LT of the function ? P(T b > t) in terms of certain LTs derived from the distribution function H(x; t) = P(X(t) ≤ x), considered as a function of both variables x and t. Moreover, for G(t, u) = P(T b > t, X(t) < u), that is the joint distribution function of sup0 ≤ st X(s) and X(t), an integro-differential equation is presented, whose unique solution is G(t, u).  相似文献   

15.
Abstract

In this paper the problem of finding exactly optimal sampling designs for estimating the weighted integral of a stochastic process with a product covariance structure (R(s,t)=u(s)v(t), s<t) is discussed. The sampling designs for certain standard processes belonging to the product class are calculated. An asymptotic solution to the design problem also follows as a consequence.  相似文献   

16.
In this note we consider the problems of optimal linear prediction (o.l.p.) and the minimum mean squared error prediction (m.m.s.e.p.) of a sequence Xt, which fits to a stationary and invertible ARMA model through the filter (1 - Bs)d Xt= Yt. It is shown that these two predictors are not identical in general from the theoretical point of view. Permitting the degree of differencing d to take any real value, a set of conditions for these commonly applied prediction formulas to be identical is given.  相似文献   

17.
In statistical inference on the drift parameter a in the fractional Brownian motion WHt with the Hurst parameter H ∈ (0, 1) with a constant drift YHt = at + WHt, there is a large number of options how to do it. We may, for example, base this inference on the properties of the standard normal distribution applied to the differences between the observed values of the process at discrete times. Although such methods are very simple, it turns out that more appropriate is to use inverse methods. Such methods can be generalized to non constant drift. For the hypotheses testing about the drift parameter a, it is more proper to standardize the observed process, and to use inverse methods based on the first exit time of the observed process of a pre-specified interval until some given time. These procedures are illustrated, and their times of decision are compared against the direct approach. Other generalizations are possible when the random part is a symmetric stochastic integral of a known, deterministic function with respect to fractional Brownian motion.  相似文献   

18.
19.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

20.
This paper considers estimation of the function g in the model Yt = g(Xt ) + ?t when E(?t|Xt) ≠ 0 with nonzero probability. We assume the existence of an instrumental variable Zt that is independent of ?t, and of an innovation ηt = XtE(Xt|Zt). We use a nonparametric regression of Xt on Zt to obtain residuals ηt, which in turn are used to obtain a consistent estimator of g. The estimator was first analyzed by Newey, Powell & Vella (1999) under the assumption that the observations are independent and identically distributed. Here we derive a sample mean‐squared‐error convergence result for independent identically distributed observations as well as a uniform‐convergence result under time‐series dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号