首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This article provides a novel test for predictability within a nonlinear smooth transition predictive regression (STPR) model where inference is complicated due not only to the presence of persistent, local to unit root, predictors, and endogeneity but also the presence of unidentified parameters under the null of no predictability. In order to circumvent the unidentified parameters problem, t? statistic for the predictor in the STPR model is optimized over the Cartesian product of the spaces for the transition and threshold parameters; and to address the di?culties due to persistent and endogenous predictors, the instrumental variable (IVX) method originally developed in the linear cointegration testing framework is adopted within the STPR model. Limit distribution of this statistic (i.e., sup?tIVX test) is shown to be nuisance parameter-free and robust to the local to unit root and endogenous regressors. Simulations show that sup?tIVX has good size and power properties. An application to stock return predictability reveals presence of asymmetric regime-dependence and variability in the strength and size of predictability across asset-related (e.g., dividend/price ratio) vs. other (e.g., default yield spread) predictors.  相似文献   

2.
We investigate the behavior of the well-known Hylleberg, Engle, Granger and Yoo (HEGY) regression-based seasonal unit root tests in cases where the driving shocks can display periodic nonstationary volatility and conditional heteroskedasticity. Our set up allows for periodic heteroskedasticity, nonstationary volatility and (seasonal) generalized autoregressive-conditional heteroskedasticity as special cases. We show that the limiting null distributions of the HEGY tests depend, in general, on nuisance parameters which derive from the underlying volatility process. Monte Carlo simulations show that the standard HEGY tests can be substantially oversized in the presence of such effects. As a consequence, we propose wild bootstrap implementations of the HEGY tests. Two possible wild bootstrap resampling schemes are discussed, both of which are shown to deliver asymptotically pivotal inference under our general conditions on the shocks. Simulation evidence is presented which suggests that our proposed bootstrap tests perform well in practice, largely correcting the size problems seen with the standard HEGY tests even under extreme patterns of heteroskedasticity, yet not losing finite sample relative to the standard HEGY tests.  相似文献   

3.
This paper proposes various double unit root tests for cross-sectionally dependent panel data. The cross-sectional correlation is handled by the projection method [P.C.B. Phillips and D. Sul, Dynamic panel estimation and homogeneity testing under cross section dependence, Econom. J. 6 (2003), pp. 217–259; H.R. Moon and B. Perron, Testing for a unit root in panels with dynamic factors, J. Econom. 122 (2004), pp. 81–126] or the subtraction method [J. Bai and S. Ng, A PANIC attack on unit roots and cointegration, Econometrica 72 (2004), pp. 1127–1177]. Pooling or averaging is applied to combine results from different panel units. Also, to estimate autoregressive parameters the ordinary least squares estimation [D.P. Hasza and W.A. Fuller, Estimation for autoregressive processes with unit roots, Ann. Stat. 7 (1979), pp. 1106–1120] or the symmetric estimation [D.L. Sen and D.A. Dickey, Symmetric test for second differencing in univariate time series, J. Bus. Econ. Stat. 5 (1987), pp. 463–473] are used, and to adjust mean functions the ordinary mean adjustment or the recursive mean adjustment are used. Combinations of different methods in defactoring to eliminate the cross-sectional dependency, integrating results from panel units, estimating the parameters, and adjusting mean functions yields various available tests for double unit roots in panel data. Simple asymptotic distributions of the proposed test statistics are derived, which can be used to find critical values of the test statistics.

We perform a Monte Carlo experiment to compare the performance of these tests and to suggest optimal tests for a given panel data. Application of the proposed tests to a real data, the yearly export panel data sets of several Latin–American countries for the past 50 years, illustrates the usefulness of the proposed tests for panel data, in that they reveal stronger evidence of double unit roots than the componentwise double unit root tests of Hasza and Fuller [Estimation for autoregressive processes with unit roots, Ann. Stat. 7 (1979), pp. 1106–1120] or Sen and Dickey [Symmetric test for second differencing in univariate time series, J. Bus. Econ. Stat. 5 (1987), pp. 463–473].  相似文献   


4.
Dong Wan Shin 《Statistics》2015,49(1):209-223
Stationary bootstrapping is applied to panel cointegration tests which are based on the ordinary least-squares estimator and the seemingly unrelated regression (SUR) estimator of the residual unit root. Large sample validity of stationary bootstrapping is established. A finite sample experiment reveals that size performances of the bootstrap tests are much less sensitive to cross-sectional correlation than those of existing tests and a test based on the SUR estimator has substantially better power than existing tests.  相似文献   

5.
Panel data unit root tests, which can be applied to data that do not have many time series observations, are based on very restrictive error and deterministic component specification assumptions. In this paper, we develop a new, doubly modified estimator, based on which we propose a panel unit root test that allows for multiple structural breaks, linear and nonlinear trends, heteroscedasticity, serial correlation, and error cross‐section heterogeneity, when the number of time series observations is finite. The test has the additional perk that it is invariant to the initial condition.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号