首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In earlier work, Kirchner [An estimation procedure for the Hawkes process. Quant Financ. 2017;17(4):571–595], we introduced a nonparametric estimation method for the Hawkes point process. In this paper, we present a simulation study that compares this specific nonparametric method to maximum-likelihood estimation. We find that the standard deviations of both estimation methods decrease as power-laws in the sample size. Moreover, the standard deviations are proportional. For example, for a specific Hawkes model, the standard deviation of the branching coefficient estimate is roughly 20% larger than for MLE – over all sample sizes considered. This factor becomes smaller when the true underlying branching coefficient becomes larger. In terms of runtime, our method clearly outperforms MLE. The present bias of our method can be well explained and controlled. As an incidental finding, we see that also MLE estimates seem to be significantly biased when the underlying Hawkes model is near criticality. This asks for a more rigorous analysis of the Hawkes likelihood and its optimization.  相似文献   

2.
The present study proposes a method to estimate the yield of a crop. The proposed Gaussian quadrature (GQ) method makes it possible to estimate the crop yield from a smaller subsample. Identification of plots and corresponding weights to be assigned to the yield of plots comprising a subsample is done with the help of information about the full sample on certain auxiliary variables relating to biometrical characteristics of the plant. Computational experience reveals that the proposed method leads to about 78% reduction in sample size with absolute percentage error of 2.7%. Performance of the proposed method has been compared with that of random sampling on the basis of the values of average absolute percentage error and standard deviation of yield estimates obtained from 40 samples of comparable size. Interestingly, average absolute percentage error as well as standard deviation is considerably smaller for the GQ estimates than for the random sample estimates. The proposed method is quite general and can be applied for other crops as well-provided information on auxiliary variables relating to yield contributing biometrical characteristics is available.  相似文献   

3.
Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.  相似文献   

4.
We present the maximum likelihood estimation (MLE) via particle swarm optimization (PSO) algorithm to estimate the mixture of two Weibull parameters with complete and multiple censored data. A simulation study is conducted to assess the performance of the MLE via PSO algorithm, quasi-Newton method and expectation-maximization (EM) algorithm for different parameter settings and sample sizes in both uncensored and censored cases. The simulation results showed that the PSO algorithm outperforms the quasi-Newton method and the EM algorithm in most cases regarding bias and root mean square errors. Two numerical examples are used to demonstrate the performance of our proposed method.  相似文献   

5.
An estimated sample size is a function of three components: the required power, the predetermined Type I error rate, and the specified effect size. For Normal data the standardized effect size is taken as the difference between two means divided by an estimate of the population standard deviation. However, in early phase trials one may not have a good estimate of the population variance as it is often based on the results of a few relatively small trials. The imprecision of this estimate should be taken into account in sample size calculations. When estimating a trial sample size this paper recommends that one should investigate the sensitivity of the trial to the assumptions made about the variance and consider being adaptive in one's trial design. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   

6.
Approximate normality and unbiasedness of the maximum likelihood estimate (MLE) of the long-memory parameter H of a fractional Brownian motion hold reasonably well for sample sizes as small as 20 if the mean and scale parameter are known. We show in a Monte Carlo study that if the latter two parameters are unknown the bias and variance of the MLE of H both increase substantially. We also show that the bias can be reduced by using a parametric bootstrap procedure. In very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. To overcome this difficulty, we propose a maximum likelihood method based upon first differences of the data. These first differences form a short-memory process. We split the data into a number of contiguous blocks consisting of a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo-likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. The computation time required to obtain the estimate and its standard error from large data sets is an order of magnitude less than that required to obtain the widely used Whittle estimator. Application of the methodology is illustrated on two data sets.  相似文献   

7.
We propose an iterative method of estimation for discrete missing data problems that is conceptually different from the Expectation–Maximization (EM) algorithm and that does not in general yield the observed data maximum likelihood estimate (MLE). The proposed approach is based conceptually upon weighting the set of possible complete-data MLEs. Its implementation avoids the expectation step of EM, which can sometimes be problematic. In the simple case of Bernoulli trials missing completely at random, the iterations of the proposed algorithm are equivalent to the EM iterations. For a familiar genetics-oriented multinomial problem with missing count data and for the motivating example with epidemiologic applications that involves a mixture of a left censored normal distribution with a point mass at zero, we investigate the finite sample performance of the proposed estimator and find it to be competitive with that of the MLE. We give some intuitive justification for the method, and we explore an interesting connection between our algorithm and multiple imputation in order to suggest an approach for estimating standard errors.  相似文献   

8.
This paper deals with estimation of a green tree frog population in an urban setting using repeated capture–mark–recapture (CMR) method over several weeks with an individual tagging system which gives rise to a complicated generalization of the hypergeometric distribution. Based on the maximum likelihood estimation, a parametric bootstrap approach is adopted to obtain interval estimates of the weekly population size which is the main objective of our work. The method is computation-based; and programming intensive to implement the algorithm for re-sampling. This method can be applied to estimate the population size of any species based on repeated CMR method at multiple time points. Further, it has been pointed out that the well-known Jolly–Seber method, which is based on some strong assumptions, produces either unrealistic estimates, or may have situations where its assumptions are not valid for our observed data set.  相似文献   

9.
Adaptive sample size redetermination (SSR) for clinical trials consists of examining early subsets of on‐trial data to adjust prior estimates of statistical parameters and sample size requirements. Blinded SSR, in particular, while in use already, seems poised to proliferate even further because it obviates many logistical complications of unblinded methods and it generally introduces little or no statistical or operational bias. On the other hand, current blinded SSR methods offer little to no new information about the treatment effect (TE); the obvious resulting problem is that the TE estimate scientists might simply ‘plug in’ to the sample size formulae could be severely wrong. This paper proposes a blinded SSR method that formally synthesizes sample data with prior knowledge about the TE and the within‐treatment variance. It evaluates the method in terms of the type 1 error rate, the bias of the estimated TE, and the average deviation from the targeted power. The method is shown to reduce this average deviation, in comparison with another established method, over a range of situations. The paper illustrates the use of the proposed method with an example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Consider a random sample X1, X2,…, Xn, from a normal population with unknown mean and standard deviation. Only the sample size, mean and range are recorded and it is necessary to estimate the unknown population mean and standard deviation. In this paper the estimation of the mean and standard deviation is made from a Bayesian perspective by using a Markov Chain Monte Carlo (MCMC) algorithm to simulate samples from the intractable joint posterior distribution of the mean and standard deviation. The proposed methodology is applied to simulated and real data. The real data refers to the sugar content (oBRIX level) of orange juice produced in different countries.  相似文献   

11.
In this paper, we review the adaptive design methodology of Li et al. (Biostatistics 3 :277–287) for two‐stage trials with mid‐trial sample size adjustment. We argue that it is closer in principle to a group sequential design, in spite of its obvious adaptive element. Several extensions are proposed that aim to make it even more attractive and transparent alternative to a standard (fixed sample size) trial for funding bodies to consider. These enable a cap to be put on the maximum sample size and for the trial data to be analysed using standard methods at its conclusion. The regulatory view of trials incorporating unblinded sample size re‐estimation is also discussed. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons, Ltd.  相似文献   

12.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

13.
We present a maximum likelihood estimation procedure for the multivariate frailty model. The estimation is based on a Monte Carlo EM algorithm. The expectation step is approximated by averaging over random samples drawn from the posterior distribution of the frailties using rejection sampling. The maximization step reduces to a standard partial likelihood maximization. We also propose a simple rule based on the relative change in the parameter estimates to decide on sample size in each iteration and a stopping time for the algorithm. An important new concept is acquiring absolute convergence of the algorithm through sample size determination and an efficient sampling technique. The method is illustrated using a rat carcinogenesis dataset and data on vase lifetimes of cut roses. The estimation results are compared with approximate inference based on penalized partial likelihood using these two examples. Unlike the penalized partial likelihood estimation, the proposed full maximum likelihood estimation method accounts for all the uncertainty while estimating standard errors for the parameters.  相似文献   

14.
A hierarchical logit-normal model for analysis of binary data with extra-binomial variation is examined. A method of approximate maximum likelihood estimation of the parameters is proposed. The method uses the EM algorithm and approximations to facilitate its implementation are derived. Approximate standard errors of the estimates are provided and a numerical example is used to illustrate the method.  相似文献   

15.
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.  相似文献   

16.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

17.
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.  相似文献   

18.
The local maximum likelihood estimate θ^ t of a parameter in a statistical model f ( x , θ) is defined by maximizing a weighted version of the likelihood function which gives more weight to observations in the neighbourhood of t . The paper studies the sense in which f ( t , θ^ t ) is closer to the true distribution g ( t ) than the usual estimate f ( t , θ^) is. Asymptotic results are presented for the case in which the model misspecification becomes vanishingly small as the sample size tends to ∞. In this setting, the relative entropy risk of the local method is better than that of maximum likelihood. The form of optimum weights for the local likelihood is obtained and illustrated for the normal distribution.  相似文献   

19.
In this article, we consider a competing cause scenario and assume the wider family of Conway–Maxwell–Poisson (COM–Poisson) distribution to model the number of competing causes. Assuming the type of the data to be interval censored, the main contribution is in developing the steps of the expectation maximization (EM) algorithm to determine the maximum likelihood estimates (MLEs) of the model parameters. A profile likelihood approach within the EM framework is proposed to estimate the COM–Poisson shape parameter. An extensive simulation study is conducted to evaluate the performance of the proposed EM algorithm. Model selection within the wider class of COM–Poisson distribution is carried out using likelihood ratio test and information-based criteria. A study to demonstrate the effect of model mis-specification is also carried out. Finally, the proposed estimation method is applied to a data on smoking cessation and a detailed analysis of the obtained results is presented.  相似文献   

20.
The EM algorithm is a popular method for computing maximum likelihood estimates. One of its drawbacks is that it does not produce standard errors as a by-product. We consider obtaining standard errors by numerical differentiation. Two approaches are considered. The first differentiates the Fisher score vector to yield the Hessian of the log-likelihood. The second differentiates the EM operator and uses an identity that relates its derivative to the Hessian of the log-likelihood. The well-known SEM algorithm uses the second approach. We consider three additional algorithms: one that uses the first approach and two that use the second. We evaluate the complexity and precision of these three and the SEM in algorithm seven examples. The first is a single-parameter example used to give insight. The others are three examples in each of two areas of EM application: Poisson mixture models and the estimation of covariance from incomplete data. The examples show that there are algorithms that are much simpler and more accurate than the SEM algorithm. Hopefully their simplicity will increase the availability of standard error estimates in EM applications. It is shown that, as previously conjectured, a symmetry diagnostic can accurately estimate errors arising from numerical differentiation. Some issues related to the speed of the EM algorithm and algorithms that differentiate the EM operator are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号