首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative microbial risk assessment (QMRA) is a valuable tool that can be used to predict the risk associated with human exposure to specific microbial contaminants in water sources. The transparency inherent in the QMRA process benefits discussions between multidisciplinary teams because members of such teams have different expertise and their confidence in the risk assessment output will depend upon whether they regard the selected input data and assumptions as being suitable and/or plausible. Selection of input data requires knowledge of the availability of appropriate data sets, the limitations of using a particular data set, and the logic of using alternative approaches. In performing QMRA modeling and in the absence of directly relevant data, compromises must be made. One such compromise made is to use available Escherichia coli data and apply a ratio of enteric viruses to indicator E. coli in wastewater obtained from prior studies to estimate the concentration of enteric viruses in other wastewater types/sources. In this article, we have provided an argument for why we do not recommend the use of a pathogen to E. coli ratio to estimate virus concentrations in single household graywater and additionally suggested circumstances in which use of such a ratio may be justified.  相似文献   

2.
Epidemiology and quantitative microbiological risk assessment are disciplines in which the same public health measures are estimated, but results differ frequently. If large, these differences can confuse public health policymakers. This article aims to identify uncertainty sources that explain apparent differences in estimates for Campylobacter spp. incidence and attribution in the Netherlands, based on four previous studies (two for each discipline). An uncertainty typology was used to identify uncertainty sources and the NUSAP method was applied to characterize the uncertainty and its influence on estimates. Model outcomes were subsequently calculated for alternative scenarios that simulated very different but realistic alternatives in parameter estimates, modeling, data handling, or analysis to obtain impressions of the total uncertainty. For the epidemiological assessment, 32 uncertainty sources were identified and for QMRA 67. Definitions (e.g., of a case) and study boundaries (e.g., of the studied pathogen) were identified as important drivers for the differences between the estimates of the original studies. The range in alternatively calculated estimates usually overlapped between disciplines, showing that proper appreciation of uncertainty can explain apparent differences between the initial estimates from both disciplines. Uncertainty was not estimated in the original QMRA studies and underestimated in the epidemiological studies. We advise to give appropriate attention to uncertainty in QMRA and epidemiological studies, even if only qualitatively, so that scientists and policymakers can interpret reported outcomes more correctly. Ideally, both disciplines are joined by merging their strong respective properties, leading to unified public health measures.  相似文献   

3.
《Risk analysis》2018,38(2):392-409
The relative contributions of exposure pathways associated with cattle‐manure‐borne Escherichia coli O157:H7 on public health have yet to be fully characterized. A stochastic, quantitative microbial risk assessment (QMRA) model was developed to describe a hypothetical cattle farm in order to compare the relative importance of five routes of exposure, including aquatic recreation downstream of the farm, consumption of contaminated ground beef processed with limited interventions, consumption of leafy greens, direct animal contact, and the recreational use of a cattle pasture. To accommodate diverse environmental and hydrological pathways, existing QMRAs were integrated with novel and simplistic climate and field‐level submodels. The model indicated that direct animal contact presents the greatest risk of illness per exposure event during the high pathogen shedding period. However, when accounting for the frequency of exposure, using a high‐risk exposure‐receptor profile, consumption of ground beef was associated with the greatest risk of illness. Additionally, the model was used to evaluate the efficacy of hypothetical interventions affecting one or more exposure routes; concurrent evaluation of multiple routes allowed for the assessment of the combined effect of preharvest interventions across exposure pathways—which may have been previously underestimated—as well as the assessment of the effect of additional downstream interventions. This analysis represents a step towards a full evaluation of the risks associated with multiple exposure pathways; future incorporation of variability associated with environmental parameters and human behaviors would allow for a comprehensive assessment of the relative contribution of exposure pathways at the population level.  相似文献   

4.
Nontyphoidal salmonellosis is the second most frequently reported zoonotic disease in the European Union (EU) and is considered to be a major threat to human health worldwide. The most reported Salmonella serovar in the EU is S. Enteritidis, mainly associated with egg contamination, followed by S. Typhimurium, with the latter being the most predominant serovar isolated from pork. These findings suggest that reducing the Salmonella contamination in the pork production might be a good strategy to prevent and control human salmonellosis in the EU. Recently, a quantitative microbial risk assessment (QMRA) has been developed to assess the risks for human salmonellosis due to home consumption of fresh minced pork meat in Belgium.( 1 ) The newly developed risk model is called the METZOON model. In the current study, the METZOON model was used to evaluate the effectiveness of different hypothetical Salmonella mitigation strategies implemented at different stages of the minced pork production and consumption chain by means of a scenario analysis. To efficiently evaluate the mitigation strategies, model results were obtained by running simulations using the randomized complete block design. The effectiveness of a mitigation strategy is expressed using point and interval estimates of the effect size for dependent observations, expressed as the standardized difference in population means. The results indicate that the most effective strategies are taken during the slaughter processes of polishing, evisceration, and chilling, and during postprocessing, whereas interventions in the primary production and at the beginning of the slaughter process seem to have only a limited effect. Improving consumer awareness is found to be effective as well.  相似文献   

5.
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.  相似文献   

6.
The disease burden of pathogens as estimated by QMRA (quantitative microbial risk assessment) and EA (epidemiological analysis) often differs considerably. This is an unsatisfactory situation for policymakers and scientists. We explored methods to obtain a unified estimate using campylobacteriosis in the Netherlands as an example, where previous work resulted in estimates of 4.9 million (QMRA) and 90,600 (EA) cases per year. Using the maximum likelihood approach and considering EA the gold standard, the QMRA model could produce the original EA estimate by adjusting mainly the dose‐infection relationship. Considering QMRA the gold standard, the EA model could produce the original QMRA estimate by adjusting mainly the probability that a gastroenteritis case is caused by Campylobacter. A joint analysis of QMRA and EA data and models assuming identical outcomes, using a frequentist or Bayesian approach (using vague priors), resulted in estimates of 102,000 or 123,000 campylobacteriosis cases per year, respectively. These were close to the original EA estimate, and this will be related to the dissimilarity in data availability. The Bayesian approach further showed that attenuating the condition of equal outcomes immediately resulted in very different estimates of the number of campylobacteriosis cases per year and that using more informative priors had little effect on the results. In conclusion, EA was dominant in estimating the burden of campylobacteriosis in the Netherlands. However, it must be noted that only statistical uncertainties were taken into account here. Taking all, usually difficult to quantify, uncertainties into account might lead to a different conclusion.  相似文献   

7.
In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose‐response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk reductions are less different for scenarios modeling the implementation of control measures. For control measures affecting the Campylobacter prevalence, the relative risk is proportional irrespective of the CPM used. However, for control measures affecting the concentration the CPMs show some difference in the estimated relative risk. This difference is largest for scenarios where the aim is to remove the highly contaminated portion from human exposure. Given these results, we conclude that for many purposes it is not necessary to develop a new detailed CPM for each new QMRA. However, more observational data on consumer food handling practices and their impact on microbial transfer and survival are needed to generalize this conclusion.  相似文献   

8.
The aim of this study was to develop a modified quantitative microbial risk assessment (QMRA) framework that could be applied as a decision support tool to choose between alternative drinking water interventions in the developing context. The impact of different household water treatment (HWT) interventions on the overall incidence of diarrheal disease and disability adjusted life years (DALYs) was estimated, without relying on source water pathogen concentration as the starting point for the analysis. A framework was developed and a software tool constructed and then implemented for an illustrative case study for Nepal based on published scientific data. Coagulation combined with free chlorine disinfection provided the greatest estimated health gains in the short term; however, when long‐term compliance was incorporated into the calculations, the preferred intervention was porous ceramic filtration. The model demonstrates how the QMRA framework can be used to integrate evidence from different studies to inform management decisions, and in particular to prioritize the next best intervention with respect to estimated reduction in diarrheal incidence. This study only considered HWT interventions; it is recognized that a systematic consideration of sanitation, recreation, and drinking water pathways is important for effective management of waterborne transmission of pathogens, and the approach could be expanded to consider the broader water‐related context.  相似文献   

9.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

10.
This article estimates the value of a statistical life (VSL) for Chile under the hedonic wage method while accounting for individual risk preferences. Two alternative measures of risk aversion are used. First, risk aversion is directly measured using survey measures of preferences over hypothetical gambles, and second, over observed individual behaviors that may proxy for risk preferences, such as smoking status, are used. I reconcile the results with a theoretical model of economic behavior that predicts how the wage‐risk tradeoff changes as risk aversion differs across individuals. The VSL estimates range between 0.61 and 8.68 million dollars. The results using smoking behavior as a proxy for risk attitudes are consistent with previous findings. However, directly measuring risk aversion corrects the wage‐risk tradeoff estimation bias in the opposite direction. The results are robust to other observed measures of risk aversion such as drinking behavior and stock investments. Results suggest that, consistent with the literature that connects smoking behavior with labor market outcomes, smoking status could be capturing poor health productivity effect in addition to purely risk preferences.  相似文献   

11.
Modeling Logistic Performance in Quantitative Microbial Risk Assessment   总被引:1,自引:0,他引:1  
In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times—mutually dependent in successive steps in the chain—cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for  Listeria monocytogenes  in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.  相似文献   

12.
The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose–response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose–response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose–response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose–response models. The results found that the majority of published QMRAs of norovirus use the 1F1 hypergeometric dose–response model with α = 0.04, β = 0.055. This dose–response model predicted relatively high risk estimates compared to other dose–response models for doses in the range of 1–1,000 genomic equivalent copies. The difference in predicted risk among dose–response models was largest for small doses, which has implications for drinking water QMRAs where the concentration of norovirus is low. Based on the review, a set of best practices was proposed to encourage the careful consideration and reporting of important assumptions in the selection and use of dose–response models in QMRA of norovirus. Finally, in the absence of one best norovirus dose–response model, multiple models should be used to provide a range of predicted outcomes for probability of infection.  相似文献   

13.
Tucker Burch 《Risk analysis》2019,39(3):599-615
The assumptions underlying quantitative microbial risk assessment (QMRA) are simple and biologically plausible, but QMRA predictions have never been validated for many pathogens. The objective of this study was to validate QMRA predictions against epidemiological measurements from outbreaks of waterborne gastrointestinal disease. I screened 2,000 papers and identified 12 outbreaks with the necessary data: disease rates measured using epidemiological methods and pathogen concentrations measured in the source water. Eight of the 12 outbreaks were caused by Cryptosporidium, three by Giardia, and one by norovirus. Disease rates varied from 5.5 × 10?6 to 1.1 × 10?2 cases/person‐day, and reported pathogen concentrations varied from 1.2 × 10?4 to 8.6 × 102 per liter. I used these concentrations with single‐hit dose–response models for all three pathogens to conduct QMRA, producing both point and interval predictions of disease rates for each outbreak. Comparison of QMRA predictions to epidemiological measurements showed good agreement; interval predictions contained measured disease rates for 9 of 12 outbreaks, with point predictions off by factors of 1.0–120 (median = 4.8). Furthermore, 11 outbreaks occurred at mean doses of less than 1 pathogen per exposure. Measured disease rates for these outbreaks were clearly consistent with a single‐hit model, and not with a “two‐hit” threshold model. These results demonstrate the validity of QMRA for predicting disease rates due to Cryptosporidium and Giardia.  相似文献   

14.
The numeral unit spread assessment pedigree (NUSAP) system was implemented to evaluate the quality of input parameters in a quantitative microbial risk assessment (QMRA) model for Salmonella spp. in minced pork meat. The input parameters were grouped according to four successive exposure pathways: (1) primary production (2) transport, holding, and slaughterhouse, (3) postprocessing, distribution, and storage, and (4) preparation and consumption. An inventory of 101 potential input parameters was used for building the QMRA model. The characteristics of each parameter were defined using a standardized procedure to assess (1) the source of information, (2) the sampling methodology and sample size, and (3) the distributional properties of the estimate. Each parameter was scored by a panel of experts using a pedigree matrix containing four criteria (proxy, empirical basis, method, and validation) to assess the quality, and this was graphically represented by means of kite diagrams. The parameters obtained significantly lower scores for the validation criterion as compared with the other criteria. Overall strengths of parameters related to the primary production module were significantly stronger compared to the other modules (the transport, holding, and slaughterhouse module, the processing, distribution, and storage module, and the preparation and consumption module). The pedigree assessment contributed to select 20 parameters, which were subsequently introduced in the QMRA model. The NUSAP methodology and kite diagrams are objective tools to discuss and visualize the quality of the parameters in a structured way. These two tools can be used in the selection procedure of input parameters for a QMRA, and can lead to a more transparent quality assurance in the QMRA.  相似文献   

15.
Dose‐response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi‐mechanistic models known as single‐hit models, such as the exponential and the exact beta‐Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single‐hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so‐called single‐hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single‐hit models. Further analysis of the model framework is facilitated by formulating the single‐hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single‐hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model‐consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model‐consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model‐consistent expression for the mean per‐exposure dose that produces the correct total risk from repeated exposures is developed.  相似文献   

16.
T. Walton 《Risk analysis》2012,32(7):1122-1138
Through the use of case‐control analyses and quantitative microbial risk assessment (QMRA), relative risks of transmission of cryptosporidiosis have been evaluated (recreational water exposure vs. drinking water consumption) for a Canadian community with higher than national rates of cryptosporidiosis. A QMRA was developed to assess the risk of Cryptosporidium infection through the consumption of municipally treated drinking water. Simulations were based on site‐specific surface water contamination levels and drinking water treatment log10 reduction capacity for Cryptosporidium. Results suggested that the risk of Cryptosporidium infection via drinking water in the study community, assuming routine operation of the water treatment plant, was negligible (6 infections per 1013 persons per day—5th percentile: 2 infections per 1015 persons per day; 95th percentile: 3 infections per 1012 persons per day). The risk is essentially nonexistent during optimized, routine treatment operations. The study community achieves between 7 and 9 log10Cryptosporidium oocyst reduction through routine water treatment processes. Although these results do not preclude the need for constant vigilance by both water treatment and public health professionals in this community, they suggest that the cause of higher rates of cryptosporidiosis are more likely due to recreational water contact, or perhaps direct animal contact. QMRA can be successfully applied at the community level to identify data gaps, rank relative public health risks, and forecast future risk scenarios. It is most useful when performed in a collaborative way with local stakeholders, from beginning to end of the risk analysis paradigm.  相似文献   

17.
Louis Anthony Cox  Jr  . 《Risk analysis》2007,27(1):27-43
This article discusses a concept of concern-driven risk management, in which qualitative expert judgments about whether concerns warrant specified risk management interventions are used in preference to quantitative risk assessment (QRA) to guide risk management decisions. Where QRA emphasizes formal quantitative assessment of the probable consequences caused by the recommended actions, and comparison to the probable consequences of alternatives, including the status quo, concern-driven risk management instead emphasizes perceived urgency or severity of the situation motivating recommended interventions. In many instances, especially those involving applications of the precautionary principle, no formal quantification or comparison of probable consequences for alternative decisions is seen as being necessary (or, perhaps, possible or desirable) prior to implementation of risk management measures. Such concern-driven risk management has been recommended by critics of QRA in several areas of applied risk management. Based on case studies and psychological literature on the empirical performance of judgment-based approaches to decision making under risk and uncertainty, we conclude that, although concern-driven risk management has several important potential political and psychological advantages over QRA, it is not clear that it performs better than (or as well as) QRA in identifying risk management interventions that successfully protect human health or achieve other desired consequences. Therefore, those who advocate replacing QRA with concern-driven alternatives, such as expert judgment and consensus decision processes, should assess whether their recommended alternatives truly outperform QRA, by the criterion of producing preferred consequences, before rejecting the QRA paradigm for practical applications.  相似文献   

18.
Regulatory agencies often perform microbial risk assessments to evaluate the change in the number of human illnesses as the result of a new policy that reduces the level of contamination in the food supply. These agencies generally have regulatory authority over the production and retail sectors of the farm‐to‐table continuum. Any predicted change in contamination that results from new policy that regulates production practices occurs many steps prior to consumption of the product. This study proposes a framework for conducting microbial food‐safety risk assessments; this framework can be used to quantitatively assess the annual effects of national regulatory policies. Advantages of the framework are that estimates of human illnesses are consistent with national disease surveillance data (which are usually summarized on an annual basis) and some of the modeling steps that occur between production and consumption can be collapsed or eliminated. The framework leads to probabilistic models that include uncertainty and variability in critical input parameters; these models can be solved using a number of different Bayesian methods. The Bayesian synthesis method performs well for this application and generates posterior distributions of parameters that are relevant to assessing the effect of implementing a new policy. An example, based on Campylobacter and chicken, estimates the annual number of illnesses avoided by a hypothetical policy; this output could be used to assess the economic benefits of a new policy. Empirical validation of the policy effect is also examined by estimating the annual change in the numbers of illnesses observed via disease surveillance systems.  相似文献   

19.
The extensive data from the Blair et al.((1)) epidemiology study of occupational acrylonitrile exposure among 25460 workers in eight plants in the United States provide an excellent opportunity to update quantitative risk assessments for this widely used commodity chemical. We employ the semiparametric Cox relative risk (RR) regression model with a cumulative exposure metric to model cause-specific mortality from lung cancer and all other causes. The separately estimated cause-specific cumulative hazards are then combined to provide an overall estimate of age-specific mortality risk. Age-specific estimates of the additional risk of lung cancer mortality associated with several plausible occupational exposure scenarios are obtained. For age 70, these estimates are all markedly lower than those generated with the cancer potency estimate provided in the USEPA acrylonitrile risk assessment.((2)) This result is consistent with the failure of recent occupational studies to confirm elevated lung cancer mortality among acrylonitrile-exposed workers as was originally reported by O'Berg,((3)) and it calls attention to the importance of using high-quality epidemiology data in the risk assessment process.  相似文献   

20.
A before-stimulus-after quasi-experimental design is used to assess the factors relating to risk perceptions of a hazardous waste site. First, a pretest obtains measures of attitudes and beliefs about hazardous waste and waste sites. Second, a detailed hypothetical "Superfund" scenario, including a complex cleanup plan, is introduced. Finally, indices of health risk estimates, trust, knowledge, and other pertinent beliefs are obtained. Levels of concern, both before and after cleanup, are the dependent variables. Independent variables include risk management options, health risk estimates, trust, and five sociodemographic characteristics. Concern is extremely high prior to cleanup and moderately high after cleanup. Concern is a clear function of health risk estimates. Toxic chemicals from waste sites are viewed as a major cause of multiple health problems, especially cancers. Accurate health risk estimates moderate fears and are linked to levels of education. Education, however, does not explain concern. Trust is a major factor explaining concern and health risk estimates. The implications of these findings for risk communication is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号