首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feature screening and variable selection are fundamental in analysis of ultrahigh-dimensional data, which are being collected in diverse scientific fields at relatively low cost. Distance correlation-based sure independence screening (DC-SIS) has been proposed to perform feature screening for ultrahigh-dimensional data. The DC-SIS possesses sure screening property and filters out unimportant predictors in a model-free manner. Like all independence screening methods, however, it fails to detect the truly important predictors which are marginally independent of the response variable due to correlations among predictors. When there are many irrelevant predictors which are highly correlated with some strongly active predictors, the independence screening may miss other active predictors with relatively weak marginal signals. To improve the performance of DC-SIS, we introduce an effective iterative procedure based on distance correlation to detect all truly important predictors and potentially interactions in both linear and nonlinear models. Thus, the proposed iterative method possesses the favourable model-free and robust properties. We further illustrate its excellent finite-sample performance through comprehensive simulation studies and an empirical analysis of the rat eye expression data set.  相似文献   

2.
The varying-coefficient model is an important nonparametric statistical model since it allows appreciable flexibility on the structure of fitted model. For ultra-high dimensional heterogeneous data it is very necessary to examine how the effects of covariates vary with exposure variables at different quantile level of interest. In this paper, we extended the marginal screening methods to examine and select variables by ranking a measure of nonparametric marginal contributions of each covariate given the exposure variable. Spline approximations are employed to model marginal effects and select the set of active variables in quantile-adaptive framework. This ensures the sure screening property in quantile-adaptive varying-coefficient model. Numerical studies demonstrate that the proposed procedure works well for heteroscedastic data.  相似文献   

3.
A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under general nonparametric models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, a data-driven thresholding and an iterative nonparametric independence screening (INIS) are also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.  相似文献   

4.
In practice, the presence of influential observations may lead to misleading results in variable screening problems. We, therefore, propose a robust variable screening procedure for high-dimensional data analysis in this paper. Our method consists of two steps. The first step is to define a new high-dimensional influence measure and propose a novel influence diagnostic procedure to remove those unusual observations. The second step is to utilize the sure independence screening procedure based on distance correlation to select important variables in high-dimensional regression analysis. The new influence measure and diagnostic procedure that we developed are model free. To confirm the effectiveness of the proposed method, we conduct simulation studies and a real-life data analysis to illustrate the merits of the proposed approach over some competing methods. Both the simulation results and the real-life data analysis demonstrate that the proposed method can greatly control the adverse effect after detecting and removing those unusual observations, and performs better than the competing methods.  相似文献   

5.
We introduce a two-step procedure, in the context of ultra-high dimensional additive models, which aims to reduce the size of covariates vector and distinguish linear and nonlinear effects among nonzero components. Our proposed screening procedure, in the first step, is constructed based on the concept of cumulative distribution function and conditional expectation of response in the framework of marginal correlation. B-splines and empirical distribution functions are used to estimate the two above measures. The sure screening property of this procedure is also established. In the second step, a double penalization based procedure is applied to identify nonzero and linear components, simultaneously. The performance of the designed method is examined by several test functions to show its capabilities against competitor methods when the distribution of errors is varied. Simulation studies imply that the proposed screening procedure can be applied to the ultra-high dimensional data and well detect the influential covariates. It also demonstrate the superiority in comparison with the existing methods. This method is also applied to identify most influential genes for overexpression of a G protein-coupled receptor in mice.  相似文献   

6.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

7.
This paper is concerned with the stable feature screening for the ultrahigh dimensional data. To deal with the ultrahigh dimensional data problem and screen the important features, a set-averaging measurement is proposed. The model averaging technique and the conditional quantile method are used to construct the weighted set-averaging feature screening procedure to identify the relationships between the possible predictors and the response variable. The proposed screening method is model free, stable and possesses the sure screening property under some regular conditions. Some Monte Carlo simulations and a real data application are conducted to evaluate the performance of the proposed procedure.  相似文献   

8.
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example.  相似文献   

9.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

10.
Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.  相似文献   

11.
In this paper, we consider sure independence feature screening for ultrahigh dimensional discriminant analysis. We propose a new method named robust rank screening based on the conditional expectation of the rank of predictor’s samples. We also establish the sure screening property for the proposed procedure under simple assumptions. The new procedure has some additional desirable characters. First, it is robust against heavy-tailed distributions, potential outliers and the sample shortage for some categories. Second, it is model-free without any specification of a regression model and directly applicable to the situation with many categories. Third, it is simple in theoretical derivation due to the boundedness of the resulting statistics. Forth, it is relatively inexpensive in computational cost because of the simple structure of the screening index. Monte Carlo simulations and real data examples are used to demonstrate the finite sample performance.  相似文献   

12.
In this paper we design a sure independent ranking and screening procedure for censored regression (cSIRS, for short) with ultrahigh dimensional covariates. The inverse probability weighted cSIRS procedure is model-free in the sense that it does not specify a parametric or semiparametric regression function between the response variable and the covariates. Thus, it is robust to model mis-specification. This model-free property is very appealing in ultrahigh dimensional data analysis, particularly when there is lack of information for the underlying regression structure. The cSIRS procedure is also robust in the presence of outliers or extreme values as it merely uses the rank of the censored response variable. We establish both the sure screening and the ranking consistency properties for the cSIRS procedure when the number of covariates p satisfies \(p=o\{\exp (an)\}\), where a is a positive constant and n is the available sample size. The advantages of cSIRS over existing competitors are demonstrated through comprehensive simulations and an application to the diffuse large-B-cell lymphoma data set.  相似文献   

13.
In this article, a new model-free feature screening method named after probability density (mass) function distance (PDFD) correlation is presented for ultrahigh-dimensional data analysis. We improve the fused-Kolmogorov filter (F-KOL) screening procedure through probability density distribution. The proposed method is also fully nonparametric and can be applied to more general types of predictors and responses, including discrete and continuous random variables. Kernel density estimate method and numerical integration are applied to obtain the estimator we proposed. The results of simulation studies indicate that the fused-PDFD performs better than other existing screening methods, such as F-KOL filter, sure-independent screening (SIS), sure independent ranking and screening (SIRS), distance correlation sure-independent screening (DCSIS) and robust ranking correlation screening (RRCS). Finally, we demonstrate the validity of fused-PDFD by a real data example.  相似文献   

14.
In the era of Big Data, extracting the most important exploratory variables available in ultrahigh-dimensional data plays a key role in scientific researches. Existing researches have been mainly focusing on applying the extracted exploratory variables to describe the central tendency of their related response variables. For a response variable, its variability characteristic is as much important as the central tendency in statistical inference. This paper focuses on the variability and proposes a new model-free feature screening approach: sure explained variability and independence screening (SEVIS). The core of SEVIS is to take the advantage of recently proposed asymmetric and nonlinear generalised measures of correlation in the screening. Under some mild conditions, the paper shows that SEVIS not only possesses desired sure screening property and ranking consistency property, but also is a computational convenient variable selection method to deal with ultrahigh-dimensional data sets with more features than observations. The superior performance of SEVIS, compared with existing model-free methods, is illustrated in extensive simulations. A real example in ultrahigh-dimensional variable selection demonstrates that the variables selected by SEVIS better explain not only the response variables, but also the variables selected by other methods.  相似文献   

15.
This paper is concerned with the conditional feature screening for ultra-high dimensional right censored data with some previously identified important predictors. A new model-free conditional feature screening approach, conditional correlation rank sure independence screening, has been proposed and investigated theoretically. The suggested conditional screening procedure has several desirable merits. First, it is model free, and thus robust to model misspecification. Second, it has the advantage of robustness of heavy-tailed distributions of the response and the presence of potential outliers in response. Third, it is naturally applicable to complete data when there is no censoring. Through simulation studies, we demonstrate that the proposed approach outperforms the CoxCS of Hong et al. under some circumstances. A real dataset is used to illustrate the usefulness of the proposed conditional screening method.  相似文献   

16.
For ultrahigh-dimensional data, independent feature screening has been demonstrated both theoretically and empirically to be an effective dimension reduction method with low computational demanding. Motivated by the Buckley–James method to accommodate censoring, we propose a fused Kolmogorov–Smirnov filter to screen out the irrelevant dependent variables for ultrahigh-dimensional survival data. The proposed model-free screening method can work with many types of covariates (e.g. continuous, discrete and categorical variables) and is shown to enjoy the sure independent screening property under mild regularity conditions without requiring any moment conditions on covariates. In particular, the proposed procedure can still be powerful when covariates are strongly dependent on each other. We further develop an iterative algorithm to enhance the performance of our method while dealing with the practical situations where some covariates may be marginally unrelated but jointly related to the response. We conduct extensive simulations to evaluate the finite-sample performance of the proposed method, showing that it has favourable exhibition over the existing typical methods. As an illustration, we apply the proposed method to the diffuse large-B-cell lymphoma study.  相似文献   

17.
Screening procedures play an important role in data analysis, especially in high-throughput biological studies where the datasets consist of more covariates than independent subjects. In this article, a Bayesian screening procedure is introduced for the binary response models with logit and probit links. In contrast to many screening rules based on marginal information involving one or a few covariates, the proposed Bayesian procedure simultaneously models all covariates and uses closed-form screening statistics. Specifically, we use the posterior means of the regression coefficients as screening statistics; by imposing a generalized g-prior on the regression coefficients, we derive the analytical form of their posterior means and compute the screening statistics without Markov chain Monte Carlo implementation. We evaluate the utility of the proposed Bayesian screening method using simulations and real data analysis. When the sample size is small, the simulation results suggest improved performance with comparable computational cost.  相似文献   

18.
Variable screening for censored survival data is most challenging when both survival and censoring times are correlated with an ultrahigh-dimensional vector of covariates. Existing approaches to handling censoring often make use of inverse probability weighting by assuming independent censoring with both survival time and covariates. This is a convenient but rather restrictive assumption which may be unmet in real applications, especially when the censoring mechanism is complex and the number of covariates is large. To accommodate heterogeneous (covariate-dependent) censoring that is often present in high-dimensional survival data, we propose a Gehan-type rank screening method to select features that are relevant to the survival time. The method is invariant to monotone transformations of the response and of the predictors, and works robustly for a general class of survival models. We establish the sure screening property of the proposed methodology. Simulation studies and a lymphoma data analysis demonstrate its favorable performance and practical utility.  相似文献   

19.
This article is concerned with feature screening for the ultrahigh dimensional discriminant analysis. A variance ratio screening method is proposed and the sure screening property of this screening procedure is proved. The proposed method has some additional desirable features. First, it is model-free which does not require specific discriminant model and can be directly applied to the multi-categories situation. Second, it can effectively screen main effects and interaction effects simultaneously. Third, it is relatively inexpensive in computational cost because of the simple structure. The finite sample properties are performed through the Monte Carlo simulation studies and two real-data analyses.  相似文献   

20.
High-throughput profiling is now common in biomedical research. In this paper we consider the layout of an etiology study composed of a failure time response, and gene expression measurements. In current practice, a widely adopted approach is to select genes according to a preliminary marginal screening and a follow-up penalized regression for model building. Confounders, including for example clinical risk factors and environmental exposures, usually exist and need to be properly accounted for. We propose covariate-adjusted screening and variable selection procedures under the accelerated failure time model. While penalizing the high-dimensional coefficients to achieve parsimonious model forms, our procedure also properly adjust the low-dimensional confounder effects to achieve more accurate estimation of regression coefficients. We establish the asymptotic properties of our proposed methods and carry out simulation studies to assess the finite sample performance. Our methods are illustrated with a real gene expression data analysis where proper adjustment of confounders produces more meaningful results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号