首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Consider the model where there are II independent multivariate normal treatment populations with p×1p×1 mean vectors μiμi, i=1,…,Ii=1,,I, and covariance matrix ΣΣ. Independently the (I+1)(I+1)st population corresponds to a control and it too is multivariate normal with mean vector μI+1μI+1 and covariance matrix ΣΣ. Now consider the following two multiple testing problems.  相似文献   

2.
We study a randomized adaptive design to assign one of the LL treatments to patients who arrive sequentially by means of an urn model. At each stage nn, a reward is distributed between treatments. The treatment applied is rewarded according to its response, 0?Yn?10?Yn?1, and 1-Yn1-Yn is distributed among the other treatments according to their performance until stage n-1n-1. Patients can be classified in K+1K+1 levels and we assume that the effect of this level in the response to the treatments is linear. We study the asymptotic behavior of the design when the ordinary least square estimators are used as a measure of performance until stage n-1n-1.  相似文献   

3.
We deal with the problem of classifying a new observation vector into one of two known multivariate normal distributions when the dimension p and training sample size N   are both large with p<Np<N. Modified linear discriminant analysis (MLDA) was suggested by Xu et al. [10]. Error rate of MLDA is smaller than the one of LDA. However, if p and N   are moderately large, error rate of MLDA is close to the one of LDA. These results are conditional ones, so we should investigate whether they hold unconditionally. In this paper, we give two types of asymptotic approximations of expected probability of misclassification (EPMC) for MLDA as n→∞n with p=O(nδ)p=O(nδ), 0<δ<10<δ<1. The one of two is the same as the asymptotic approximation of LDA, and the other is corrected version of the approximation. Simulation reveals that the modified version of approximation has good accuracy for the case in which p and N are moderately large.  相似文献   

4.
5.
6.
EE-optimal designs for comparing three treatments in blocks of size three are identified, where intrablock observations are correlated according to a first order autoregressive error process with parameter ρ∈(0,1)ρ(0,1). For number of blocks b   of the form b=3n+1b=3n+1, there are two distinct optimal designs depending on the value of ρρ, with the best design being unequally replicated for large ρρ. For other values of bb, binary, equireplicate designs with specified within-block assignment patterns are best. In many cases, the stronger majorization optimality is established.  相似文献   

7.
Moments and central moments of a random variable X   are expressed as integrals of functions of lower-order conditional moments and the cumulative distribution of XX. In particular, sample central moments of order 2k2k are expressed as the sum of between groups variations, providing an analogue to the analysis of variance. Similar expressions are obtained for the expectations of real-valued and measurable functions of XX.  相似文献   

8.
In Hedayat and Pesotan [1992, Two-level factorial designs for main effects and selected two-factor interactions. Statist. Sinica 2, 453–464.] the concepts of a g(n,e)g(n,e)-design and a g(n,e)g(n,e)-matrix are introduced to study designs of nn factor two-level experiments which can unbiasedly estimate the mean, the nn main effects and ee specified two-factor interactions appearing in an orthogonal polynomial model and it is observed that the construction of a g-design is equivalent to the construction of a g  -matrix. This paper deals with the construction of D-optimal g(n,1)g(n,1)-matrices. A standard form for a g(n,1)g(n,1)-matrix is introduced and some lower and upper bounds on the absolute determinant value of a D-optimal g(n,1)g(n,1)-matrix in the class of all g(n,1)g(n,1)-matrices are obtained and an approach to construct D-optimal g(n,1)g(n,1)-matrices is given for 2?n?82?n?8. For two specific subclasses, namely a certain class of g(n,1)g(n,1)-matrices within the class of g(n,1)g(n,1)-matrices of index one and the class C(H)C(H) of g(8t+2,1)g(8t+2,1)-matrices constructed from a normalized Hadamard matrix H   of order 8t+4(t?1)8t+4(t?1) two techniques for the construction of the restricted D-optimal matrices are given.  相似文献   

9.
In this paper, we study a random field U?(t,x)U?(t,x) governed by some type of stochastic partial differential equations with an unknown parameter θθ and a small noise ??. We construct an estimator of θθ based on the continuous observation of N   Fourier coefficients of U?(t,x)U?(t,x), and prove the strong convergence and asymptotic normality of the estimator when the noise ?? tends to zero.  相似文献   

10.
We determine a credible set A   that is the “best” with respect to the variation of the prior distribution in a neighborhood ΓΓ of the starting prior π0(θ)π0(θ). Among the class of sets with credibility γγ under π0π0, the “optimally robust” set will be the one which maximizes the minimum probability of including θθ as the prior varies over ΓΓ. This procedure is also Γ-minimaxΓ-minimax with respect to the risk function, probability of non-inclusion. We find the optimally robust credible set for three neighborhood classes ΓΓ, the ε-contaminationε-contamination class, the density ratio class and the density bounded class. A consequence of this investigation is that the maximum likelihood set is seen to be an optimal credible set from a robustness perspective.  相似文献   

11.
We consider the problem of estimating the mean θθ of an Np(θ,Ip)Np(θ,Ip) distribution with squared error loss ∥δ−θ∥2δθ2 and under the constraint ∥θ∥≤mθm, for some constant m>0m>0. Using Stein's identity to obtain unbiased estimates of risk, Karlin's sign change arguments, and conditional risk analysis, we compare the risk performance of truncated linear estimators with that of the maximum likelihood estimator δmleδmle. We obtain for fixed (m,p)(m,p) sufficient conditions for dominance. An asymptotic framework is developed, where we demonstrate that the truncated linear minimax estimator dominates δmleδmle, and where we obtain simple and accurate measures of relative improvement in risk. Numerical evaluations illustrate the effectiveness of the asymptotic framework for approximating the risks for moderate or large values of p.  相似文献   

12.
Linear and quadratic forms as well as other low degree polynomials play an important role in statistical inference. Asymptotic results and limit distributions are obtained for a class of statistics depending on μ+Xμ+X, with X any random vector and μμ non-random vector with ∥μ∥→+∞μ+. This class contain the polynomials in μ+Xμ+X. An application to the case of normal X is presented. This application includes a new central limit theorem which is connected with the increase of non-centrality for samples of fixed size. Moreover upper bounds for the suprema of the differences between exact and approximate distributions and their quantiles are obtained.  相似文献   

13.
We consider Bayesian density estimation for compactly supported densities using Bernstein mixtures of beta-densities equipped with a Dirichlet prior on the distribution function. We derive the rate of convergence for αα-smooth densities for 0<α?20<α?2 and show that a faster rate of convergence can be obtained by using fewer terms in the mixtures than proposed before. The Bayesian procedure adapts to the unknown value of αα. The modified Bayesian procedure is rate-optimal if αα is at most one. This result can be extended to two dimensions.  相似文献   

14.
The problem of classifying all isomorphism classes of OA(N,k,s,t)OA(N,k,s,t)'s is shown to be equivalent to finding all isomorphism classes of non-negative integer solutions to a system of linear equations under the symmetry group of the system of equations. A branch-and-cut algorithm developed by Margot [2002. Pruning by isomorphism in branch-and-cut. Math. Programming Ser. A 94, 71–90; 2003a. Exploiting orbits in symmetric ILP. Math. Programming Ser. B 98, 3–21; 2003b. Small covering designs by branch-and-cut. Math. Programming Ser. B 94, 207–220; 2007. Symmetric ILP: coloring and small integers. Discrete Optim., 4, 40–62] for solving integer programming problems with large symmetry groups is used to find all non-isomorphic OA(24,7,2,2)OA(24,7,2,2)'s, OA(24,k,2,3)OA(24,k,2,3)'s for 6?k?116?k?11, OA(32,k,2,3)OA(32,k,2,3)'s for 6?k?116?k?11, OA(40,k,2,3)OA(40,k,2,3)'s for 6?k?106?k?10, OA(48,k,2,3)OA(48,k,2,3)'s for 6?k?86?k?8, OA(56,k,2,3)OA(56,k,2,3)'s, OA(80,k,2,4)OA(80,k,2,4)'s, OA(112,k,2,4)OA(112,k,2,4)'s, for k=6,7k=6,7, OA(64,k,2,4)OA(64,k,2,4)'s, OA(96,k,2,4)OA(96,k,2,4)'s for k=7,8k=7,8, and OA(144,k,2,4)OA(144,k,2,4)'s for k=8,9k=8,9. Further applications to classifying covering arrays with the minimum number of runs and packing arrays with the maximum number of runs are presented.  相似文献   

15.
16.
17.
We consider m×mm×m covariance matrices, Σ1Σ1 and Σ2Σ2, which satisfy Σ2-Σ1Σ2-Σ1=Δ, where ΔΔ has a specified rank. Maximum likelihood estimators of Σ1Σ1 and Σ2Σ2 are obtained when sample covariance matrices having Wishart distributions are available and rank(Δ)rank(Δ) is known. The likelihood ratio statistic for a test about the value of rank(Δ)rank(Δ) is also given and some properties of its null distribution are obtained. The methods developed in this paper are illustrated through an example.  相似文献   

18.
Skew Dyck paths     
In this paper we study the class SS of skew Dyck paths, i.e. of those lattice paths that are in the first quadrant, begin at the origin, end on the x-axis, consist of up steps  U=(1,1)U=(1,1), down steps  D=(1,-1)D=(1,-1), and left steps  L=(−1,-1)L=(1,-1), and such that up steps never overlap with left steps. In particular, we show that these paths are equinumerous with several other combinatorial objects, we describe some involutions on this class, and finally we consider several statistics on SS.  相似文献   

19.
20.
A survey of research by Emanuel Parzen on how quantile functions provide elegant and applicable formulas that unify many statistical methods, especially frequentist and Bayesian confidence intervals and prediction distributions. Section 0: In honor of Ted Anderson's 90th birthday; Section 1: Quantile functions, endpoints of prediction intervals; Section 2: Extreme value limit distributions; Sections 3, 4: Confidence and prediction endpoint function: Uniform(0,θ)(0,θ), exponential; Sections: 5, 6: Confidence quantile and Bayesian inference normal parameters μμ, σσ; Section 7: Two independent samples confidence quantiles; Section 8: Confidence quantiles for proportions, Wilson's formula. We propose ways that Bayesians and frequentists can be friends!  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号