首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

2.
The semiparametric estimators of time varying long memory parameter are investigated for locally stationary long memory processes. The GPH estimator and the local Whittle estimator are considered. Under some mild regularity assumptions, the weak consistency and the asymptotic normality of the estimators are obtained. The finite sample performance of the estimators is discussed through a small simulation study.  相似文献   

3.
We investigate the finite sample properties of the estimator of a persistence parameter of an unobservable common factor when the factor is estimated by the principal components method. When the number of cross-sectional observations is not sufficiently large, relative to the number of time series observations, the autoregressive coefficient estimator of a positively autocorrelated factor is biased downward, and the bias becomes larger for a more persistent factor. Based on theoretical and simulation analyses, we show that bootstrap procedures are effective in reducing the bias, and bootstrap confidence intervals outperform naive asymptotic confidence intervals in terms of the coverage probability.  相似文献   

4.
In this article bootstrap confidence intervals of process capability index as suggested by Chen and Pearn [An application of non-normal process capability indices. Qual Reliab Eng Int. 1997;13:355–360] are studied through simulation when the underlying distributions are inverse Rayleigh and log-logistic distributions. The well-known maximum likelihood estimator is used to estimate the parameter. The bootstrap confidence intervals considered in this paper consists of various confidence intervals. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average widths of the bootstrap confidence intervals. Application examples on two distributions for process capability indices are provided for practical use.  相似文献   

5.
This paper considers a semiparametric estimation of the memory parameter in a cyclical long-memory time series, which exhibits a strong dependence on cyclical behaviour, using the Whittle likelihood based on generalised exponential (GEXP) models. The proposed estimation is included in the so-called broadband or global method and uses information from the spectral density at all frequencies. We establish the consistency and the asymptotic normality of the estimated memory parameter for a linear process and thus do not require Gaussianity. A simulation study conducted using Monte Carlo experiments shows that the proposed estimation works well compared to other existing semiparametric estimations. Moreover, we provide an empirical application of the proposed estimation, applying it to the growth rate of Japan's industrial production index and detecting its cyclical persistence.  相似文献   

6.
For the general linear regression model Y = Xη + e, we construct small-sample exponentially tilted empirical confidence intervals for a linear parameter 6 = aTη and for nonlinear functions of η. The coverage error for the intervals is Op(1/n), as shown in Tingley and Field (1990). The technique, though sample-based, does not require bootstrap resampling. The first step is calculation of an estimate for η. We have used a Mallows estimate. The algorithm applies whenever η is estimated as the solution of a system of equations having expected value 0. We include calculations of the relative efficiency of the estimator (compared with the classical least-squares estimate). The intervals are compared with asymptotic intervals as found, for example, in Hampel et at. (1986). We demonstrate that the procedure gives sensible intervals for small samples.  相似文献   

7.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

8.
We carry out finite sample size parameter estimation methods for long-memory parameters of the class of seasonal fractional ARIMA with stable innovations. In particular, we consider the semiparametric method studied in Reisen et al. (2006) [27] and two Whittle approaches: the classical Whittle method and a method based on a Markov Chains Monte Carlo (MCMC) procedure. The performance of the methods is discussed using a Monte Carlo simulation.  相似文献   

9.
Bootstrap methods for estimating the long-run covariance of stationary functional time series are considered. We introduce a versatile bootstrap method that relies on functional principal component analysis, where principal component scores can be bootstrapped by maximum entropy. Two other bootstrap methods resample error functions, after the dependence structure being modeled linearly by a sieve method or nonlinearly by a functional kernel regression. Through a series of Monte-Carlo simulation, we evaluate and compare the finite-sample performances of these three bootstrap methods for estimating the long-run covariance in a functional time series. Using the intraday particulate matter (\(\hbox {PM}_{10}\)) dataset in Graz, the proposed bootstrap methods provide a way of constructing the distribution of estimated long-run covariance for functional time series.  相似文献   

10.
We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.  相似文献   

11.
Approximate normality and unbiasedness of the maximum likelihood estimate (MLE) of the long-memory parameter H of a fractional Brownian motion hold reasonably well for sample sizes as small as 20 if the mean and scale parameter are known. We show in a Monte Carlo study that if the latter two parameters are unknown the bias and variance of the MLE of H both increase substantially. We also show that the bias can be reduced by using a parametric bootstrap procedure. In very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. To overcome this difficulty, we propose a maximum likelihood method based upon first differences of the data. These first differences form a short-memory process. We split the data into a number of contiguous blocks consisting of a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo-likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. The computation time required to obtain the estimate and its standard error from large data sets is an order of magnitude less than that required to obtain the widely used Whittle estimator. Application of the methodology is illustrated on two data sets.  相似文献   

12.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

13.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

14.
The authors study the application of the bootstrap to a class of estimators which converge at a nonstandard rate to a nonstandard distribution. They provide a theoretical framework to study its asymptotic behaviour. A simulation study shows that in the case of an estimator such as Chernoff's estimator of the mode, usually the basic bootstrap confidence intervals drastically undercover while the percentile bootstrap intervals overcover. This is a rare instance where basic and percentile confidence intervals, which have exactly the same length, behave in a very different way. In the case of Chernoff's estimator, if the distribution is symmetric, it is possible to bootstrap from a smooth symmetric estimator of the distribution for which the basic bootstrap confidence intervals will have the claimed coverage probability while the percentile bootstrap interval will have an asymptotic coverage of 1!  相似文献   

15.
We introduce an estimator for the population mean based on maximizing likelihoods formed from a symmetric kernel density estimate. Due to these origins, we have dubbed the estimator the symmetric maximum kernel likelihood estimate (smkle). A speedy computational method to compute the smkle based on binning is implemented in a simulation study which shows that the smkle at an optimal bandwidth is decidedly superior in terms of efficiency to the sample mean and other measures of location for heavy-tailed symmetric distributions. An empirical rule and a computational method to estimate this optimal bandwidth are developed and used to construct bootstrap confidence intervals for the population mean. We show that the intervals have approximately nominal coverage and have significantly smaller average width than the corresponding intervals for other measures of location.  相似文献   

16.
ABSTRACT

It has been shown that equilibrium restrictions in a search model can be used to identify quantiles of the search cost distribution from observedprices alone. These quantiles can be difficult to estimate in practice. This article uses a minimum distance approach to estimate them that is easy to compute. A version of our estimator is a solution to a nonlinear least-square problem that can be straightforwardly programmed on softwares such as STATA. We show our estimator is consistent and has an asymptotic normal distribution. Its distribution can be consistently estimated by a bootstrap. Our estimator can be used to estimate the cost distribution nonparametrically on a larger support when prices from heterogenous markets are available. We propose a two-step sieve estimator for that case. The first step estimates quantiles from each market. They are used in the second step as generated variables to perform nonparametric sieve estimation. We derive the uniform rate of convergence of the sieve estimator that can be used to quantify the errors incurred from interpolating data across markets. To illustrate we use online bookmaking odds for English football leagues’ matches (as prices) and find evidence that suggests search costs for consumers have fallen following a change in the British law that allows gambling operators to advertise more widely. Supplementary materials for this article are available online.  相似文献   

17.
In this work, we investigate an alternative bootstrap approach based on a result of Ramsey [F.L. Ramsey, Characterization of the partial autocorrelation function, Ann. Statist. 2 (1974), pp. 1296–1301] and on the Durbin–Levinson algorithm to obtain a surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semi-parametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from normality. The approach is also useful to estimate confidence intervals for the memory parameter d by improving the coverage level of the interval.  相似文献   

18.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

19.
Empirical Bayes approaches have often been applied to the problem of estimating small-area parameters. As a compromise between synthetic and direct survey estimators, an estimator based on an empirical Bayes procedure is not subject to the large bias that is sometimes associated with a synthetic estimator, nor is it as variable as a direct survey estimator. Although the point estimates perform very well, naïve empirical Bayes confidence intervals tend to be too short to attain the desired coverage probability, since they fail to incorporate the uncertainty which results from having to estimate the prior distribution. Several alternative methodologies for interval estimation which correct for the deficiencies associated with the naïve approach have been suggested. Laird and Louis (1987) proposed three types of bootstrap for correcting naïve empirical Bayes confidence intervals. Calling the methodology of Laird and Louis (1987) an unconditional bias-corrected naïve approach, Carlin and Gelfand (1991) suggested a modification to the Type III parametric bootstrap which corrects for bias in the naïve intervals by conditioning on the data. Here we empirically evaluate the Type II and Type III bootstrap proposed by Laird and Louis, as well as the modification suggested by Carlin and Gelfand (1991), with the objective of examining coverage properties of empirical Bayes confidence intervals for small-area proportions.  相似文献   

20.
Given a linear time series, e.g. an autoregression of infinite order, we may construct a finite order approximation and use that as the basis for confidence regions. The sieve or autoregressive bootstrap, as this method is often called, is generally seen as a competitor with the better-understood block bootstrap approach. However, in the present paper we argue that, for linear time series, the sieve bootstrap has significantly better performance than blocking methods and offers a wider range of opportunities. In particular, since it does not corrupt second-order properties then it may be used in a double-bootstrap form, with the second bootstrap application being employed to calibrate a basic percentile method confidence interval. This approach confers second-order accuracy without the need to estimate variance. That offers substantial benefits, since variances of statistics based on time series can be difficult to estimate reliably, and—partly because of the relatively small amount of information contained in a dependent process—are notorious for causing problems when used to Studentize. Other advantages of the sieve bootstrap include considerably greater robustness against variations in the choice of the tuning parameter, here equal to the autoregressive order, and the fact that, in contradistinction to the case of the block bootstrap, the percentile t version of the sieve bootstrap may be based on the 'raw' estimator of standard error. In the process of establishing these properties we show that the sieve bootstrap is second order correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号