首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A \(k\)-connected (resp. \(k\)-edge connected) dominating set \(D\) of a connected graph \(G\) is a subset of \(V(G)\) such that \(G[D]\) is \(k\)-connected (resp. \(k\)-edge connected) and each \(v\in V(G)\backslash D\) has at least one neighbor in \(D\). The \(k\) -connected domination number (resp. \(k\) -edge connected domination number) of a graph \(G\) is the minimum size of a \(k\)-connected (resp. \(k\)-edge connected) dominating set of \(G\), and denoted by \(\gamma _k(G)\) (resp. \(\gamma '_k(G)\)). In this paper, we investigate the relation of independence number and 2-connected (resp. 2-edge-connected) domination number, and prove that for a graph \(G\), if it is \(2\)-edge connected, then \(\gamma '_2(G)\le 4\alpha (G)-1\), and it is \(2\)-connected, then \(\gamma _2(G)\le 6\alpha (G)-3\), where \(\alpha (G)\) is the independent number of \(G\).  相似文献   

2.
Let \(G=(V,E)\) be a graph and \(\phi \) be a total \(k\)-coloring of \(G\) using the color set \(\{1,\ldots , k\}\). Let \(\sum _\phi (u)\) denote the sum of the color of the vertex \(u\) and the colors of all incident edges of \(u\). A \(k\)-neighbor sum distinguishing total coloring of \(G\) is a total \(k\)-coloring of \(G\) such that for each edge \(uv\in E(G)\), \(\sum _\phi (u)\ne \sum _\phi (v)\). By \(\chi ^{''}_{nsd}(G)\), we denote the smallest value \(k\) in such a coloring of \(G\). Pil?niak and Wo?niak first introduced this coloring and conjectured that \(\chi _{nsd}^{''}(G)\le \Delta (G)+3\) for any simple graph \(G\). In this paper, we prove that the conjecture holds for planar graphs without intersecting triangles with \(\Delta (G)\ge 7\). Moreover, we also show that \(\chi _{nsd}^{''}(G)\le \Delta (G)+2\) for planar graphs without intersecting triangles with \(\Delta (G) \ge 9\). Our approach is based on the Combinatorial Nullstellensatz and the discharging method.  相似文献   

3.
Let \(G\) be a connected graph with \(n\ge 2\) vertices. Let \(k\ge 1\) be an integer. Suppose that a fire breaks out at a vertex \(v\) of \(G\). A firefighter starts to protect vertices. At each step, the firefighter protects \(k\)-vertices not yet on fire. At the end of each step, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let \(\hbox {sn}_k(v)\) denote the maximum number of vertices in \(G\) that the firefighter can save when a fire breaks out at vertex \(v\). The \(k\)-surviving rate \(\rho _k(G)\) of \(G\) is defined to be \(\frac{1}{n^2}\sum _{v\in V(G)} {\hbox {sn}}_{k}(v)\), which is the average proportion of saved vertices. In this paper, we prove that if \(G\) is a planar graph with \(n\ge 2\) vertices and without 5-cycles, then \(\rho _2(G)>\frac{1}{363}\).  相似文献   

4.
Let \(G=(V, E)\) be a graph. Denote \(d_G(u, v)\) the distance between two vertices \(u\) and \(v\) in \(G\). An \(L(2, 1)\)-labeling of \(G\) is a function \(f: V \rightarrow \{0,1,\cdots \}\) such that for any two vertices \(u\) and \(v\), \(|f(u)-f(v)| \ge 2\) if \(d_G(u, v) = 1\) and \(|f(u)-f(v)| \ge 1\) if \(d_G(u, v) = 2\). The span of \(f\) is the difference between the largest and the smallest number in \(f(V)\). The \(\lambda \)-number of \(G\), denoted \(\lambda (G)\), is the minimum span over all \(L(2,1 )\)-labelings of \(G\). In this article, we confirm Conjecture 6.1 stated in X. Li et al. (J Comb Optim 25:716–736, 2013) in the case when (i) \(\ell \) is even, or (ii) \(\ell \ge 5\) is odd and \(0 \le r \le 8\).  相似文献   

5.
The total chromatic number of a graph \(G\), denoted by \(\chi ''(G)\), is the minimum number of colors needed to color the vertices and edges of \(G\) such that no two adjacent or incident elements get the same color. It is known that if a planar graph \(G\) has maximum degree \(\Delta (G)\ge 9\), then \(\chi ''(G)=\Delta (G)+1\). In this paper, it is proved that if \(G\) is a planar graph with \(\Delta (G)\ge 7\), and for each vertex \(v\), there is an integer \(k_v\in \{3,4,5,6,7,8\}\) such that there is no \(k_v\)-cycle which contains \(v\), then \(\chi ''(G)=\Delta (G)+1\).  相似文献   

6.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound.  相似文献   

7.
A total coloring of a graph \(G\) is a coloring of its vertices and edges such that adjacent or incident vertices and edges are not colored with the same color. A total \([k]\)-coloring of a graph \(G\) is a total coloring of \(G\) by using the color set \([k]=\{1,2,\ldots ,k\}\). Let \(f(v)\) denote the sum of the colors of a vertex \(v\) and the colors of all incident edges of \(v\). A total \([k]\)-neighbor sum distinguishing-coloring of \(G\) is a total \([k]\)-coloring of \(G\) such that for each edge \(uv\in E(G)\), \(f(u)\ne f(v)\). Let \(G\) be a graph which can be embedded in a surface of nonnegative Euler characteristic. In this paper, it is proved that the total neighbor sum distinguishing chromatic number of \(G\) is \(\Delta (G)+2\) if \(\Delta (G)\ge 14\), where \(\Delta (G)\) is the maximum degree of \(G\).  相似文献   

8.
A cyclic edge-cut of a connected graph \(G\) is an edge set, the removal of which separates two cycles. If \(G\) has a cyclic edge-cut, then it is called cyclically separable. For a cyclically separable graph \(G\), the cyclic edge connectivity of a graph \(G\), denoted by \(\lambda _c(G)\), is the minimum cardinality over all cyclic edge cuts. Let \(X\) be a non-empty proper subset of \(V(G)\). If \([X,\overline{X}]=\{xy\in E(G)\ |\ x\in X, y\in \overline{X}\}\) is a minimum cyclic edge cut of \(G\), then \(X\) is called a \(\lambda _c\) -fragment of \(G\). A \(\lambda _c\)-fragment with minimum cardinality is called a \(\lambda _c\) -atom. Let \(G\) be a \(k (k\ge 3)\)-regular cyclically separable graph with \(\lambda _c(G)<g(k-2)\), where \(g\) is the girth of \(G\). A combination of the results of Nedela and Skoviera (Math Slovaca 45:481–499, 1995) and Xu and Liu (Australas J Combin 30:41–49, 2004) gives that if \(k\ne 5\) then any two distinct \(\lambda _c\)-atoms of \(G\) are disjoint. The remaining case of \(k=5\) is considered in this paper, and a new proof for Nedela and ?koviera’s result is also given. As a result, we obtain the following result. If \(X\) and \(X'\) are two distinct \(\lambda _c\)-atoms of \(G\) such that \(X\cap X'\ne \emptyset \), then \((k,g)=(5,3)\) and \(G[X]\cong K_4\). As corollaries, several previous results are easily obtained.  相似文献   

9.
A vertex coloring is called \(2\)-distance if any two vertices at distance at most \(2\) from each other get different colors. The minimum number of colors in 2-distance colorings of \(G\) is its 2-distance chromatic number, denoted by \(\chi _2(G)\). Let \(G\) be a plane graph with girth at least \(5\). In this paper, we prove that \(\chi _2(G)\le \Delta +8\) for arbitrary \(\Delta (G)\), which partially improves some known results.  相似文献   

10.
Let \(G = (V;E)\) be a simple graph with vertex set \(V\) and edge set \(E\). A signed mixed Roman dominating function (SMRDF) of \(G\) is a function \(f: V\cup E\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{y\in N_m[x]}f(y)\ge 1\) for each \(x\in V\cup E\), where \(N_m[x]\) is the set, called mixed closed neighborhood of \(x\), consists of \(x\) and the elements of \(V\cup E\) adjacent or incident to \(x\) (ii) every element \(x\in V\cup E\) for which \(f(x) = -1\) is adjacent or incident to at least one element \(y\in V\cup E\) for which \(f(y) = 2\). The weight of a SMRDF \(f\) is \(\omega (f)=\sum _{x\in V\cup E}f(x)\). The signed mixed Roman domination number \(\gamma _{sR}^*(G)\) of \(G\) is the minimum weight of a SMRDF of \(G\). In this paper we initiate the study of the signed mixed Roman domination number and we present bounds for this parameter. In particular, we determine this parameter for some classes of graphs.  相似文献   

11.
We initiate the study of relaxed \(L(2,1)\)-labelings of graphs. Suppose \(G\) is a graph. Let \(u\) be a vertex of \(G\). A vertex \(v\) is called an \(i\)-neighbor of \(u\) if \(d_G(u,v)=i\). A \(1\)-neighbor of \(u\) is simply called a neighbor of \(u\). Let \(s\) and \(t\) be two nonnegative integers. Suppose \(f\) is an assignment of nonnegative integers to the vertices of \(G\). If the following three conditions are satisfied, then \(f\) is called an \((s,t)\)-relaxed \(L(2,1)\)-labeling of \(G\): (1) for any two adjacent vertices \(u\) and \(v\) of \(G, f(u)\not =f(v)\); (2) for any vertex \(u\) of \(G\), there are at most \(s\) neighbors of \(u\) receiving labels from \(\{f(u)-1,f(u)+1\}\); (3) for any vertex \(u\) of \(G\), the number of \(2\)-neighbors of \(u\) assigned the label \(f(u)\) is at most \(t\). The minimum span of \((s,t)\)-relaxed \(L(2,1)\)-labelings of \(G\) is called the \((s,t)\)-relaxed \(L(2,1)\)-labeling number of \(G\), denoted by \(\lambda ^{s,t}_{2,1}(G)\). It is clear that \(\lambda ^{0,0}_{2,1}(G)\) is the so called \(L(2,1)\)-labeling number of \(G\). \(\lambda ^{1,0}_{2,1}(G)\) is simply written as \(\widetilde{\lambda }(G)\). This paper discusses basic properties of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of graphs. For any two nonnegative integers \(s\) and \(t\), the exact values of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of paths, cycles and complete graphs are determined. Tight upper and lower bounds for \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of complete multipartite graphs and trees are given. The upper bounds for \((s,1)\)-relaxed \(L(2,1)\)-labeling number of general graphs are also investigated. We introduce a new graph parameter called the breaking path covering number of a graph. A breaking path \(P\) is a vertex sequence \(v_1,v_2,\ldots ,v_k\) in which each \(v_i\) is adjacent to at least one vertex of \(v_{i-1}\) and \(v_{i+1}\) for \(i=2,3,\ldots ,k-1\). A breaking path covering of \(G\) is a set of disjoint such vertex sequences that cover all vertices of \(G\). The breaking path covering number of \(G\), denoted by \(bpc(G)\), is the minimum number of breaking paths in a breaking path covering of \(G\). In this paper, it is proved that \(\widetilde{\lambda }(G)= n+bpc(G^{c})-2\) if \(bpc(G^{c})\ge 2\) and \(\widetilde{\lambda }(G)\le n-1\) if and only if \(bpc(G^{c})=1\). The breaking path covering number of a graph is proved to be computable in polynomial time. Thus, if a graph \(G\) is of diameter two, then \(\widetilde{\lambda }(G)\) can be determined in polynomial time. Several conjectures and problems on relaxed \(L(2,1)\)-labelings are also proposed.  相似文献   

12.
Let \(G=(V,E)\) be a graph. A set \(S\subseteq V\) is a restrained dominating set if every vertex in \(V-S\) is adjacent to a vertex in \(S\) and to a vertex in \(V-S\). The restrained domination number of \(G\), denoted \(\gamma _{r}(G)\), is the smallest cardinality of a restrained dominating set of \(G\). Consider a bipartite graph \(G\) of order \(n\ge 4,\) and let \(k\in \{2,3,...,n-2\}.\) In this paper we will show that if \(\gamma _{r}(G)=k\), then \(m\le ((n-k)(n-k+6)+4k-8)/4\). We will also show that this bound is best possible.  相似文献   

13.
In the Minimum Weight Partial Connected Set Cover problem, we are given a finite ground set \(U\), an integer \(q\le |U|\), a collection \(\mathcal {E}\) of subsets of \(U\), and a connected graph \(G_{\mathcal {E}}\) on vertex set \(\mathcal {E}\), the goal is to find a minimum weight subcollection of \(\mathcal {E}\) which covers at least \(q\) elements of \(U\) and induces a connected subgraph in \(G_{\mathcal {E}}\). In this paper, we derive a “partial cover property” for the greedy solution of the Minimum Weight Set Cover problem, based on which we present (a) for the weighted version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are adjacent in \(G_{\mathcal {E}}\) (the Minimum Weight Partial Connected Vertex Cover problem falls into this range), an approximation algorithm with performance ratio \(\rho (1+H(\gamma ))+o(1)\), and (b) for the cardinality version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are at most \(d\)-hops away from each other (the Minimum Partial Connected \(k\)-Hop Dominating Set problem falls into this range), an approximation algorithm with performance ratio \(2(1+dH(\gamma ))+o(1)\), where \(\gamma =\max \{|X|:X\in \mathcal {E}\}\), \(H(\cdot )\) is the Harmonic number, and \(\rho \) is the performance ratio for the Minimum Quota Node-Weighted Steiner Tree problem.  相似文献   

14.
A vertex coloring of a graph \(G\) is called acyclic if it is a proper vertex coloring such that every cycle \(C\) receives at least three colors. The acyclic chromatic number of \(G\) is the least number of colors in an acyclic coloring of \(G\). We prove that acyclic chromatic number of any graph \(G\) with maximum degree \(\Delta \ge 4\) and with girth at least \(4\Delta \) is at most \(12\Delta \).  相似文献   

15.
The reciprocal degree distance of a simple connected graph \(G=(V_G, E_G)\) is defined as \(\bar{R}(G)=\sum _{u,v \in V_G}(\delta _G(u)+\delta _G(v))\frac{1}{d_G(u,v)}\), where \(\delta _G(u)\) is the vertex degree of \(u\), and \(d_G(u,v)\) is the distance between \(u\) and \(v\) in \(G\). The reciprocal degree distance is an additive weight version of the Harary index, which is defined as \(H(G)=\sum _{u,v \in V_G}\frac{1}{d_G(u,v)}\). In this paper, the extremal \(\bar{R}\)-values on several types of important graphs are considered. The graph with the maximum \(\bar{R}\)-value among all the simple connected graphs of diameter \(d\) is determined. Among the connected bipartite graphs of order \(n\), the graph with a given matching number (resp. vertex connectivity) having the maximum \(\bar{R}\)-value is characterized. Finally, sharp upper bounds on \(\bar{R}\)-value among all simple connected outerplanar (resp. planar) graphs are determined.  相似文献   

16.
We study the problem of maximizing a monotone non-decreasing function \(f\) subject to a matroid constraint. Fisher, Nemhauser and Wolsey have shown that, if \(f\) is submodular, the greedy algorithm will find a solution with value at least \(\frac{1}{2}\) of the optimal value under a general matroid constraint and at least \(1-\frac{1}{e}\) of the optimal value under a uniform matroid \((\mathcal {M} = (X,\mathcal {I})\), \(\mathcal {I} = \{ S \subseteq X: |S| \le k\}\)) constraint. In this paper, we show that the greedy algorithm can find a solution with value at least \(\frac{1}{1+\mu }\) of the optimum value for a general monotone non-decreasing function with a general matroid constraint, where \(\mu = \alpha \), if \(0 \le \alpha \le 1\); \(\mu = \frac{\alpha ^K(1-\alpha ^K)}{K(1-\alpha )}\) if \(\alpha > 1\); here \(\alpha \) is a constant representing the “elemental curvature” of \(f\), and \(K\) is the cardinality of the largest maximal independent sets. We also show that the greedy algorithm can achieve a \(1 - (\frac{\alpha + \cdots + \alpha ^{k-1}}{1+\alpha + \cdots + \alpha ^{k-1}})^k\) approximation under a uniform matroid constraint. Under this unified \(\alpha \)-classification, submodular functions arise as the special case \(0 \le \alpha \le 1\).  相似文献   

17.
An L(2,1)-labeling of a graph \(G\) is an assignment of nonnegative integers to \(V(G)\) such that the difference between labels of adjacent vertices is at least \(2\), and the difference between labels of vertices that are distance two apart is at least 1. The span of an L(2,1)-labeling of a graph \(G\) is the difference between the maximum and minimum integers used by it. The minimum span of an L(2,1)-labeling of \(G\) is denoted by \(\lambda (G)\). This paper focuses on L(2,1)-labelings-number of the edge-multiplicity-paths-replacement \(G(rP_{k})\) of a graph \(G\). In this paper, we obtain that \( r\Delta +1 \le \lambda (G(rP_{5}))\le r\Delta +2\), \(\lambda (G(rP_{k}))= r\Delta +1\) for \(k\ge 6\); and \(\lambda (G(rP_{4}))\le (\Delta +1)r+1\), \(\lambda (G(rP_{3}))\le (\Delta +1)r+\Delta \) for any graph \(G\) with maximum degree \(\Delta \). And the L(2,1)-labelings-numbers of the edge-multiplicity-paths-replacement \(G(rP_{k})\) are completely determined for \(1\le \Delta \le 2\). And we show that the class of graphs \(G(rP_{k})\) with \(k\ge 3 \) satisfies the conjecture: \(\lambda ^{T}_{2}(G)\le \Delta +2\) by Havet and Yu (Technical Report 4650, 2002).  相似文献   

18.
Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A signed total Roman dominating function (STRDF) on a graph \(G\) is a function \(f:V(G)\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{x\in N(v)}f(x)\ge 1\) for each vertex \(v\in V(G)\), where \(N(v)\) is the neighborhood of \(v\), and (ii) every vertex \(u\) for which \(f(u)=-1\) is adjacent to at least one vertex \(v\) for which \(f(v)=2\). The weight of an SRTDF \(f\) is \(\sum _{v\in V(G)}f(v)\). The signed total Roman domination number \(\gamma _{stR}(G)\) of \(G\) is the minimum weight of an STRDF on \(G\). In this paper we initiate the study of the signed total Roman domination number of graphs, and we present different bounds on \(\gamma _{stR}(G)\). In addition, we determine the signed total Roman domination number of some classes of graphs.  相似文献   

19.
Given a graph \(G=(V, E)\), a \(P_2\)-packing \(\mathcal {P}\) is a collection of vertex disjoint copies of \(P_2\)s in \(G\) where a \(P_2\) is a simple path with three vertices and two edges. The Maximum \(P_2\)-Packing problem is to find a \(P_2\)-packing \(\mathcal {P}\) in the input graph \(G\) of maximum cardinality. This problem is NP-hard for cubic graphs. In this paper, we give a branch-and-reduce algorithm for the Maximum \(P_2\)-Packing problem in cubic graphs. We analyze the running time of the algorithm using measure-and-conquer and show that it runs in time \(O^{*}(1.4366^n)\) which is faster than previous known exact algorithms where \(n\) is the number of vertices in the input graph.  相似文献   

20.
For positive numbers \(j\) and \(k\), an \(L(j,k)\)-labeling \(f\) of \(G\) is an assignment of numbers to vertices of \(G\) such that \(|f(u)-f(v)|\ge j\) if \(d(u,v)=1\), and \(|f(u)-f(v)|\ge k\) if \(d(u,v)=2\). The span of \(f\) is the difference between the maximum and the minimum numbers assigned by \(f\). The \(L(j,k)\)-labeling number of \(G\), denoted by \(\lambda _{j,k}(G)\), is the minimum span over all \(L(j,k)\)-labelings of \(G\). In this article, we completely determine the \(L(j,k)\)-labeling number (\(2j\le k\)) of the Cartesian product of path and cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号