首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hsiuying Wang 《Statistics》2013,47(2):327-343
Setting confidence bounds or intervals for a parameter in a restricted parameter space is an important issue in applications and is widely discussed in the recent literature. In this article, we focus on the distributions in the exponential families, and propose general forms of the truncated Pratt interval and rp interval for the means. We take the Poisson distribution as an example to illustrate the method and compare it with the other existing intervals. Besides possessing the merits from the theoretical inferences, the proposed intervals are also shown to be competitive approaches from simulation and real-data application studies.  相似文献   

2.
ABSTRACT

The correlation coefficient (CC) is a standard measure of a possible linear association between two continuous random variables. The CC plays a significant role in many scientific disciplines. For a bivariate normal distribution, there are many types of confidence intervals for the CC, such as z-transformation and maximum likelihood-based intervals. However, when the underlying bivariate distribution is unknown, the construction of confidence intervals for the CC is not well-developed. In this paper, we discuss various interval estimation methods for the CC. We propose a generalized confidence interval for the CC when the underlying bivariate distribution is a normal distribution, and two empirical likelihood-based intervals for the CC when the underlying bivariate distribution is unknown. We also conduct extensive simulation studies to compare the new intervals with existing intervals in terms of coverage probability and interval length. Finally, two real examples are used to demonstrate the application of the proposed methods.  相似文献   

3.
Confidence intervals [based on F-distribution and (Z) standard normal distribution] for a linear contrast in intraclass correlation coefficients under unequal family sizes for several populations based on several independent multinormal samples have been proposed. It has been found that the confidence interval based on F-distribution consistently and reliably produced better results in terms of shorter average length of the interval than the confidence interval based on standard normal distribution for various combinations of intraclass correlation coefficient values. The coverage probability of the interval based on F-distribution is competitive with the coverage probability of the interval based on standard normal distribution. The interval based on F-distribution can be used for both small sample and large sample situations. An example with real life data has been presented.  相似文献   

4.
This paper considers constructing a new confidence interval for the slope parameter in the structural errors-in-variables model with known error variance associated with the regressors. Existing confidence intervals are so severely affected by Gleser–Hwang effect that they are subject to have poor empirical coverage probabilities and unsatisfactory lengths. Moreover, these problems get worse with decreasing reliability ratio which also result in more frequent absence of some existing intervals. To ease these issues, this paper presents a fiducial generalized confidence interval which maintains the correct asymptotic coverage. Simulation results show that this fiducial interval is slightly conservative while often having average length comparable or shorter than the other methods. Finally, we illustrate these confidence intervals with two real data examples, and in the second example some existing intervals do not exist.  相似文献   

5.
In this paper we discuss constructing confidence intervals based on asymptotic generalized pivotal quantities (AGPQs). An AGPQ associates a distribution with the corresponding parameter, and then an asymptotically correct confidence interval can be derived directly from this distribution like Bayesian or fiducial interval estimates. We provide two general procedures for constructing AGPQs. We also present several examples to show that AGPQs can yield new confidence intervals with better finite-sample behaviors than traditional methods.  相似文献   

6.
The inverse hypergeometric distribution is of interest in applications of inverse sampling without replacement from a finite population where a binary observation is made on each sampling unit. Thus, sampling is performed by randomly choosing units sequentially one at a time until a specified number of one of the two types is selected for the sample. Assuming the total number of units in the population is known but the number of each type is not, we consider the problem of estimating this parameter. We use the Delta method to develop approximations for the variance of three parameter estimators. We then propose three large sample confidence intervals for the parameter. Based on these results, we selected a sampling of parameter values for the inverse hypergeometric distribution to empirically investigate performance of these estimators. We evaluate their performance in terms of expected probability of parameter coverage and confidence interval length calculated as means of possible outcomes weighted by the appropriate outcome probabilities for each parameter value considered. The unbiased estimator of the parameter is the preferred estimator relative to the maximum likelihood estimator and an estimator based on a negative binomial approximation, as evidenced by empirical estimates of closeness to the true parameter value. Confidence intervals based on the unbiased estimator tend to be shorter than the two competitors because of its relatively small variance but at a slight cost in terms of coverage probability.  相似文献   

7.
Negative binomial group distribution was proposed in the literature which was motivated by inverse sampling when considering group inspection: products are inspected group by group, and the number of non-conforming items of a group is recorded only until the inspection of the whole group is finished. The non-conforming probability p of the population is thus the parameter of interest. In this paper, the confidence interval construction for this parameter is investigated. The common normal approximation and exact method are applied. To overcome the drawbacks of these commonly used methods, a composite method that is based on the confidence intervals of the negative binomial distribution is proposed, which benefits from the relationship between negative binomial distribution and negative binomial group distribution. Simulation studies are carried out to examine the performances of our methods. A real data example is also presented to illustrate the application of our method.  相似文献   

8.
Consider a linear regression model with independent normally distributed errors. Suppose that the scalar parameter of interest is a specified linear combination of the components of the regression parameter vector. Also suppose that we have uncertain prior information that a parameter vector, consisting of specified distinct linear combinations of these components, takes a given value. Part of our evaluation of a frequentist confidence interval for the parameter of interest is the scaled expected length, defined to be the expected length of this confidence interval divided by the expected length of the standard confidence interval for this parameter, with the same confidence coefficient. We say that a confidence interval for the parameter of interest utilizes this uncertain prior information if (a) the scaled expected length of this interval is substantially less than one when the prior information is correct, (b) the maximum value of the scaled expected length is not too large and (c) this confidence interval reverts to the standard confidence interval, with the same confidence coefficient, when the data happen to strongly contradict the prior information. We present a new confidence interval for a scalar parameter of interest, with specified confidence coefficient, that utilizes this uncertain prior information. A factorial experiment with one replicate is used to illustrate the application of this new confidence interval.  相似文献   

9.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

10.
In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter based on progressively Type-II censored sample are obtained. A β-expectation tolerance interval for the lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.  相似文献   

11.
The author proposes the best shrinkage predictor of a preassigned dominance level for a future order statistic of an exponential distribution, assuming a prior estimate of the scale parameter is distributed over an interval according to an arbitrary distribution with known mean. Based on a Type II censored sample from this distribution, we predict the future order statistic in another independent sample from the same distribution. The predictor is constructed by incorporating a preliminary confidence interval for the scale parameter and a class of shrinkage predictors constructed here. It improves considerably classical predictors for all values of the scale parameter within its dominance interval containing the confidence interval of a preassigned level.  相似文献   

12.
13.
In this paper, we consider the inferential procedures for the generalized inverted exponential distribution under progressive first failure censoring. The exact confidence interval for the scale parameter is derived. The generalized confidence intervals (GCIs) for the shape parameter and some commonly used reliability metrics such as the quantile and the reliability function are explored. Then the proposed procedure is extended to the prediction interval for the future measurement. The GCIs for the reliability of the stress-strength model are discussed under both equal scale and unequal scale scenarios. Extensive simulations are used to demonstrate the performance of the proposed GCIs and prediction interval. Finally, an example is used to illustrate the proposed methods.  相似文献   

14.
This paper is concerned with interval estimation of an autoregressive parameter when the parameter space allows for magnitudes outside the unit interval. In this case, intervals based on the least-squares estimator tend to require a high level of numerical computation and can be unreliable for small sample sizes. Intervals based on the asymptotic distribution of instrumental variable estimators provide an alternative. If the instrument is taken to be the sign function, the interval is centered at the Cauchy estimator and a large sample interval can be created by estimating the standard error of this estimator. The interval proposed in this paper avoids estimating this standard error and results in a small sample improvement in coverage probability. In fact, small sample coverage is exact when the innovations come from a normal distribution.  相似文献   

15.
In this article we examine sample size calculations for a binomial proportion based on the confidence interval width of the Agresti–Coull, Wald and Wilson Score intervals. We pointed out that the commonly used methods based on known and fixed standard errors cannot guarantee the desired confidence interval width given a hypothesized proportion. Therefore, a new adjusted sample size calculation method was introduced, which is based on the conditional expectation of the width of the confidence interval given the hypothesized proportion. With the reduced sample size, the coverage probability can still maintain at the nominal level and is very competitive to the converge probability for the original sample size.  相似文献   

16.
We discuss a new way of constructing pointwise confidence intervals for the distribution function in the current status model. The confidence intervals are based on the smoothed maximum likelihood estimator, using local smooth functional theory and normal limit distributions. Bootstrap methods for constructing these intervals are considered. Other methods to construct confidence intervals, using the non‐standard limit distribution of the (restricted) maximum likelihood estimator, are compared with our approach via simulations and real data applications.  相似文献   

17.
对二项分布比例参数p的似然比置信区间,提出一种简便求解方法。在平均覆盖率、平均区间长度及区间长度的95%置信区间准则下与WScore、Plus4、Jeffreys置信区间进行模拟比较。试验表明,在二项分布b(n,p)的参数n≥20且p∈(0.1,0.9)时,该方法获取的似然比置信区间性能优良。当点估计p值不是接近于0或1且n≥20时,推荐使用本方法获取p的置信区间。  相似文献   

18.
In this article, we present a procedure for approximate negative binomial tolerance intervals. We utilize an approach that has been well-studied to approximate tolerance intervals for the binomial and Poisson settings, which is based on the confidence interval for the parameter in the respective distribution. A simulation study is performed to assess the coverage probabilities and expected widths of the tolerance intervals. The simulation study also compares eight different confidence interval approaches for the negative binomial proportions. We recommend using those in practice that perform the best based on our simulation results. The method is also illustrated using two real data examples.  相似文献   

19.
The authors describe a new method for constructing confidence intervals. Their idea consists in specifying the cutoff points in terms of a function of the target parameter rather than as constants. When it is suitably chosen, this so‐called tail function yields shorter confidence intervals in the presence of prior information. It can also be used to improve the coverage properties of approximate confidence intervals. The authors illustrate their technique by application to interval estimation of the mean of Bernoulli and normal populations. They further suggest guidelines for choosing the optimal tail function and discuss the relationship with Bayesian inference.  相似文献   

20.
In this article, we develop four explicit asymptotic two-sided confidence intervals for the difference between two Poisson rates via a hybrid method. The basic idea of the proposed method is to estimate or recover the variances of the two Poisson rate estimates, which are required for constructing the confidence interval for the rate difference, from the confidence limits for the two individual Poisson rates. The basic building blocks of the approach are reliable confidence limits for the two individual Poisson rates. Four confidence interval estimators that have explicit solutions and good coverage levels are employed: the first normal with continuity correction, Rao score, Freeman and Tukey, and Jeffreys confidence intervals. Using simulation studies, we examine the performance of the four hybrid confidence intervals and compare them with three existing confidence intervals: the non-informative prior Bayes confidence interval, the t confidence interval based on Satterthwait's degrees of freedom, and the Bayes confidence interval based on Student's t confidence coefficient. Simulation results show that the proposed hybrid Freeman and Tukey, and the hybrid Jeffreys confidence intervals can be highly recommended because they outperform the others in terms of coverage probabilities and widths. The other methods tend to be too conservative and produce wider confidence intervals. The application of these confidence intervals are illustrated with three real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号