首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The maximum likelihood (ML) equations calculated from censored normal samples do not admit explicit solutions. A principle of modification is given and modified maximum likelihood (MML) equations, which admit explicit solutions, are defined. This approach makes it possible to tackle the hitherto unresolved problem of estimating and testing hypotheses about group-effects in one-way classification experimental designs based on Type I censored normal samples. The MML estimators of group-effects are obtained as explicit functions of sample observations and shown to be asymptotically identical with the ML estimators and hence BAN (best asymptotic normal) estimators. A statistic t is defined to test a linear contrast of group-effects and shown to be asymptotically normally distributed. A numerical example is presented which illustrates the procedure.  相似文献   

2.
In one-way ANOVA, most of the pairwise multiple comparison procedures depend on normality assumption of errors. In practice, errors have non-normal distributions so frequently. Therefore, it is very important to develop robust estimators of location and the associated variance under non-normality. In this paper, we consider the estimation of one-way ANOVA model parameters to make pairwise multiple comparisons under short-tailed symmetric (STS) distribution. The classical least squares method is neither efficient nor robust and maximum likelihood estimation technique is problematic in this situation. Modified maximum likelihood (MML) estimation technique gives the opportunity to estimate model parameters in closed forms under non-normal distributions. Hence, the use of MML estimators in the test statistic is proposed for pairwise multiple comparisons under STS distribution. The efficiency and power comparisons of the test statistic based on sample mean, trimmed mean, wave and MML estimators are given and the robustness of the test obtained using these estimators under plausible alternatives and inlier model are examined. It is demonstrated that the test statistic based on MML estimators is efficient and robust and the corresponding test is more powerful and having smallest Type I error.  相似文献   

3.
We consider AR(q) models in time series with asymmetric innovations represented by two families ofdistributions: (i) gamma with support IR : (0, ∞), and (ii) generalized logistic with support IR:(-∞,∞). Since the ML (maximum likelihood) estimators are intractable, we derive the MML (modified maximum likelihood) estimators of the parameters and show that they are remarkably efficient besides being easy to compute. We investigate the efficiency properties of the classical LS (least squares) estimators. Their efficiencies relative to the proposed MML estimators are very low.  相似文献   

4.
It is known that the maximum likelihood methods does not provide explicit estimators for the mean and standard deviation of the normal distribution based on Type II censored samples. In this paper we present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We obtain the variances and covariance of these estimators. We also show that these estimators are almost as eficient as the maximum likelihood (ML) estimators and just as eficient as the best linear unbiased (BLU), and the modified maximum likelihood (MML) estimators. Finally, we illustrate this method of estimation by applying it to Gupta's and Darwin's data.  相似文献   

5.
In this article, we assume that the distribution of the error terms is skew t in two-way analysis of variance (ANOVA). Skew t distribution is very flexible for modeling the symmetric and the skew datasets, since it reduces to the well-known normal, skew normal, and Student's t distributions. We obtain the estimators of the model parameters by using the maximum likelihood (ML) and the modified maximum likelihood (MML) methodologies. We also propose new test statistics based on these estimators for testing the equality of the treatment and the block means and also the interaction effect. The efficiencies of the ML and the MML estimators and the power values of the test statistics based on them are compared with the corresponding normal theory results via Monte Carlo simulation study. Simulation results show that the proposed methodologies are more preferable. We also show that the test statistics based on the ML estimators are more powerful than the test statistics based on the MML estimators as expected. However, power values of the test statistics based on the MML estimators are very close to the corresponding test statistics based on the ML estimators. At the end of the study, a real life example is given to show the implementation of the proposed methodologies.  相似文献   

6.
Statistical inferences for the geometric process (GP) are derived when the distribution of the first occurrence time is assumed to be inverse Gaussian (IG). An α-series process, as a possible alternative to the GP, is introduced since the GP is sometimes inappropriate to apply some reliability and scheduling problems. In this study, statistical inference problem for the α-series process is considered where the distribution of first occurrence time is IG. The estimators of the parameters α, μ, and σ2 are obtained by using the maximum likelihood (ML) method. Asymptotic distributions and consistency properties of the ML estimators are derived. In order to compare the efficiencies of the ML estimators with the widely used nonparametric modified moment (MM) estimators, Monte Carlo simulations are performed. The results showed that the ML estimators are more efficient than the MM estimators. Moreover, two real life datasets are given for application purposes.  相似文献   

7.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters.

Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem.  相似文献   

8.
The problem of estimation of a parameter of interest in the presence of a nuisance parameter, which is either location or scale, is considered. Three estimators are taken into account: usual maximum likelihood (ML) estimator, maximum integrated likelihood estimator and the bias-corrected ML estimator. General results on comparison of these estimators w.r.t. the second-order risk based on the mean-squared error are obtained. Possible improvements of basic estimators via the notion of admissibility and methodology given in Ghosh and Sinha [A necessary and sufficient condition for second order admissibility with applications to Berkson's bioassay problem. Ann Stat. 1981;9(6):1334–1338] are considered. In the recent paper by Tanaka et al. [On improved estimation of a gamma shape parameter. Statistics. 2014; doi:10.1080/02331888.2014.915842], this problem was considered for estimating the shape parameter of gamma distribution. Here, we perform more accurate comparison of estimators for this case as well as for some other cases.  相似文献   

9.
Censoring can be occurred in many statistical analyses in the framework of experimental design. In this study, we estimate the model parameters in one-way ANOVA under Type II censoring. We assume that the distribution of the error terms is Azzalini's skew normal. We use Tiku's modified maximum likelihood (MML) methodology which is a modified version of the well-known maximum likelihood (ML) in the estimation procedure. Unlike ML methodology, MML methodology is non-iterative and gives explicit estimators of the model parameters. We also propose new test statistics based on the proposed estimators. The performances of the proposed estimators and the test statistics based on them are compared with the corresponding normal theory results via Monte Carlo simulation study. A real life data is analysed to show the implementation of the methodology presented in this paper at the end of the study.  相似文献   

10.
A particular concerns of researchers in statistical inference is bias in parameters estimation. Maximum likelihood estimators are often biased and for small sample size, the first order bias of them can be large and so it may influence the efficiency of the estimator. There are different methods for reduction of this bias. In this paper, we proposed a modified maximum likelihood estimator for the shape parameter of two popular skew distributions, namely skew-normal and skew-t, by offering a new method. We show that this estimator has lower asymptotic bias than the maximum likelihood estimator and is more efficient than those based on the existing methods.  相似文献   

11.
Pseudo maximum likelihood estimation (PML) for the Dirich-let-multinomial distribution is proposed and examined in this pa-per. The procedure is compared to that based on moments (MM) for its asymptotic relative efficiency (ARE) relative to the maximum likelihood estimate (ML). It is found that PML, requiring much less computational effort than ML and possessing considerably higher ARE than MM, constitutes a good compromise between ML and MM. PML is also found to have very high ARE when an estimate for the scale parameter in the Dirichlet-multinomial distribution is all that is needed.  相似文献   

12.
In this study, two new types of estimators of the location and scale parameters are proposed having high efficiency and robustness; the dynamically weighted modified maximum likelihood (DWMML) and the combined dynamically weighted modified maximum likelihood (CDWMML) estimators. Three pairs of the DWMML and two pairs of the CDWMML estimators of the location and scale parameters are produced, namely, the DWMML1, the DWMML2 and the DWMML3, and the CDWMML1 and the CDWMML2 estimators, respectively. Based on the simulation results, the DWMML1 estimators of the location and scale parameters are almost fully efficient (under normality) and robust at the same time. The DWMML3 estimators are asymptotically fully efficient and more robust than the M-estimators. The DWMML2 estimators are a compromise between efficiency and robustness. The CDWMML1 and CDWMML2 estimators are jointly very efficient and robust. Particularly, the CDWMML1 and CDWMML2 estimators of the scale parameter are superior compared to the other estimators of the scale parameter.  相似文献   

13.
This paper deals with statistical inference on the parameters of a stochastic model, describing curved fibrous objects in three dimensions, that is based on multivariate autoregressive processes. The model is fitted to experimental data consisting of a large number of short independently sampled trajectories of multivariate autoregressive processes. We discuss relevant statistical properties (e.g. asymptotic behaviour as the number of trajectories tends to infinity) of the maximum likelihood (ML) estimators for such processes. Numerical studies are also performed to analyse some of the more intractable properties of the ML estimators. Finally the whole methodology, i.e., the fibre model and its statistical inference, is applied to appropriately describe the tracking of fibres in real materials.  相似文献   

14.
Parameter estimates of a new distribution for the strength of brittle fibers and composite materials are considered. An algorithm for generating random numbers from the distribution is suggested. Two parameter estimation methods, one based on a simple least squares procedure and the other based on the maximum likelihood principle, are studied using Monte Carlo simulation. In most cases, the maximum likelihood estimators were found to have somewhat smaller root mean squared error and bias than the least squares estimators. However, the least squares estimates are generally good and provide useful initial values for the numerical iteration used to find the maximum likelihood estimates.  相似文献   

15.
Network meta‐analysis can be implemented by using arm‐based or contrast‐based models. Here we focus on arm‐based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial‐by‐treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi‐likelihood/pseudo‐likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood reduce bias and yield satisfactory coverage rates. Sum‐to‐zero restriction and baseline contrasts for random trial‐by‐treatment interaction effects, as well as a residual ML‐like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood are therefore recommended.  相似文献   

16.
In testing product reliability, there is often a critical cutoff level that determines whether a specimen is classified as failed. One consequence is that the number of degradation data collected varies from specimen to specimen. The information of random sample size should be included in the model, and our study shows that it can be influential in estimating model parameters. Two-stage least squares (LS) and maximum modified likelihood (MML) estimation, which both assume fixed sample sizes, are commonly used for estimating parameters in the repeated measurements models typically applied to degradation data. However, the LS estimate is not consistent in the case of random sample sizes. This article derives the likelihood for the random sample size model and suggests using maximum likelihood (ML) for parameter estimation. Our simulation studies show that ML estimates have smaller biases and variances compared to the LS and MML estimates. All estimation methods can be greatly improved if the number of specimens increases from 5 to 10. A data set from a semiconductor application is used to illustrate our methods.  相似文献   

17.
Estimators of parameters are derived by using the method of modified maximum likelihood (MML) estimation when the distribution of covariate X and the error e are both non-normal in a simple analysis of covariance (ANCOVA) model. We show that our estimators are efficient. We also develop a test statistic for testing a linear contrast and show that it is robust. We give a real life example.  相似文献   

18.
The problem of estimation of parameters of a mixture of degenerate and exponential distributions is considered. A new sampling scheme is proposed and the exact bias and the mean square error (MSE) of the maximum likelihood estimators of the parameters is derived. Moment estimators, their approximate biases and the MSE are obtained. Asymptotic distributions of the estimators are also obtained for both the cases.  相似文献   

19.
The parameters of a finite mixture model cannot be consistently estimated when the data come from an embedded distribution with fewer components than that being fitted, because the distribution is represented by a subset in the parameter space, and not by a single point. Feng & McCulloch (1996) give conditions, not easily verified, under which the maximum likelihood (ML) estimator will converge to an arbitrary point in this subset. We show that the conditions can be considerably weakened. Even though embedded distributions may not be uniquely represented in the parameter space, estimators of quantities of interest, like the mean or variance of the distribution, may nevertheless actually be consistent in the conventional sense. We give an example of some practical interest where the ML estimators are root of n -consistent.
Similarly consistent statistics can usually be found to test for a simpler model vs a full model. We suggest a test statistic suitable for a general class of model and propose a parameter-based bootstrap test, based on this statistic, for when the simpler model is correct.  相似文献   

20.
Cordeiro and de Castro proposed a new family of generalized distributions based on the Kumaraswamy distribution (denoted as Kw-G). Nadarajah et al. showed that the density function of the new family of distributions can be expressed as a linear combination of the density of exponentiated family of distributions. They derived some properties of Kw-G distributions and discussed estimation of parameters using the maximum likelihood (ML) method. Cheng and Amin and Ranneby introduced a new method of estimating parameters based on Kullback–Leibler divergence (the maximum spacing (MSP) method). In this article, the estimates of parameters of Kw-G distributions are obtained using the MSP method. For some special Kw-G distributions, the new estimators are compared with ML estimators. It is shown by simulations and a real data application that MSP estimators have better properties than ML estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号