首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
In this paper, a new bivariate negative binomial regression (BNBR) model allowing any type of correlation is defined and studied. The marginal means of the bivariate model are functions of the explanatory variables. The parameters of the bivariate regression model are estimated by using the maximum likelihood method. Some test statistics including goodness-of-fit are discussed. Two numerical data sets are used to illustrate the techniques. The BNBR model tends to perform better than the bivariate Poisson regression model, but compares well with the bivariate Poisson log-normal regression model.  相似文献   

2.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

3.
In survey sampling and in stereology, it is often desirable to estimate the ratio of means θ= E(Y)/E(X) from bivariate count data (X, Y) with unknown joint distribution. We review methods that are available for this problem, with particular reference to stereological applications. We also develop new methods based on explicit statistical models for the data, and associated model diagnostics. The methods are tested on a stereological dataset. For point‐count data, binomial regression and bivariate binomial models are generally adequate. Intercept‐count data are often overdispersed relative to Poisson regression models, but adequately fitted by negative binomial regression.  相似文献   

4.
We propose a bivariate hurdle negative binomial (BHNB) regression model with right censoring to model correlated bivariate count data with excess zeros and few extreme observations. The parameters of the BHNB regression model are obtained using maximum likelihood with conjugate gradient optimization. The proposed model is applied to actual survey data where the bivariate outcome is number of days missed from primary activities and number of days spent in bed due to illness during the 4-week period preceding the inquiry date. We compared the right censored BHNB model to the right censored bivariate negative binomial (BNB) model. A simulation study is conducted to discuss some properties of the BHNB model. Our proposed model demonstrated superior performance in goodness-of-fit of estimated frequencies.KEYWORDS: Zero inflation, over-dispersion, parameter estimation, model selection, right censoring  相似文献   

5.
We propose a new bivariate negative binomial model with constant correlation structure, which was derived from a contagious bivariate distribution of two independent Poisson mass functions, by mixing the proposed bivariate gamma type density with constantly correlated covariance structure (Iwasaki & Tsubaki, 2005), which satisfies the integrability condition of McCullagh & Nelder (1989, p. 334). The proposed bivariate gamma type density comes from a natural exponential family. Joe (1997) points out the necessity of a multivariate gamma distribution to derive a multivariate distribution with negative binomial margins, and the luck of a convenient form of multivariate gamma distribution to get a model with greater flexibility in a dependent structure with indices of dispersion. In this paper we first derive a new bivariate negative binomial distribution as well as the first two cumulants, and, secondly, formulate bivariate generalized linear models with a constantly correlated negative binomial covariance structure in addition to the moment estimator of the components of the matrix. We finally fit the bivariate negative binomial models to two correlated environmental data sets.  相似文献   

6.
This paper introduces several forms of nested bivariate zero-inflated generalized Poisson (BZIGP) regression model which can be fitted to bivariate and zero-inflated count data. The main advantage of having several forms of BZIGP regression model is that they are nested and allow likelihood ratio test to be performed for choosing the best model. In addition, the BZIGP regression models have flexible forms of marginal mean–variance relationship, can be fitted to bivariate and zero-inflated count data with positive or negative correlations, and allow additional overdispersion of the two response variables. The BZIGP regression models are fitted to the Australian Health Survey data.  相似文献   

7.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

8.
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.  相似文献   

9.
This paper focuses on the modeling of the intra-day transactions at the Stock Exchange Mauritius (SEM) of the two major banking companies: Mauritius Commercial Bank Group Limited (MCB) and State Bank of Mauritius Holdings Ltd (SBMH) in Mauritius using a flexible non-stationary bivariate integer-valued moving average of order 1 (BINMA(1)) process with negative binomial (NB) innovations that may cater for different levels of over-dispersion. The generalized quasi-likelihood (GQL) approach is used to estimate the regression, dependence and over-dispersion effects. However, for the over-dispersion parameters, the auto-covariance structure in the GQL is constructed using some higher order moments. This new model is tested over some Monte-Carlo experiments and is applied to analyze the inter-related intra-day series of volume of stocks for the two banking institutions using data collected from 3 August to 16 October 2015 in the presence of some time-varying covariates such as the news effect, Friday effect and time of the day effect.  相似文献   

10.
In certain applications involving discrete data, it is sometimes found that X = 0 is observed with a frequency significantly higher than predicted by the assumed model. Zero inflated Poisson, binomial and negative binomial models have been employed in some clinical trials and in some regression analysis problems.

In this paper, we study the zero inflated modified power series distributions (IMPSD) which include among others the generalized Poisson and the generalized negative binomial distributions and hence the Poisson, binomial and negative binomial distributions. The structural properties along with the distribution of the sum of independent IMPSD variables are studied. The maximum likelihood estimation of the parameters of the model is examined and the variance-covariance matrix of the estimators is obtained. Finally, examples are presented for the generalized Poisson distribution to illustrate the results.  相似文献   

11.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

12.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

13.
孟生旺  杨亮 《统计研究》2015,32(11):97-103
索赔频率预测是非寿险费率厘定的重要组成部分。最常使用的索赔频率预测模型是泊松回归和负二项回归,以及与它们相对应的零膨胀回归模型。但是,当索赔次数观察值既具有零膨胀特征,又存在组内相依结构时,上述模型都不能很好地拟合实际数据。为此,本文在泊松分布、负二项分布、广义泊松分布、P型负二项分布等条件下分别建立了随机效应零膨胀损失次数回归模型。为了改进模型的预测效果,对于连续型的解释变量,还引入了二次平滑项,并建立了结构性零比例与解释变量之间的回归关系。基于一组实际索赔次数数据的实证分析结果表明,该模型可以显著改进现有模型的拟合效果。  相似文献   

14.
The generalized Poisson (GP) regression model has been used to model count data that exhibit over-dispersion or under-dispersion. The zero-inflated GP (ZIGP) regression model can additionally handle count data characterized by many zeros. However, the parameters of ZIGP model cannot easily be used for inference on overall exposure effects. In order to address this problem, a marginalized ZIGP is proposed to directly model the population marginal mean count. The parameters of the marginalized zero-inflated GP model are estimated by the method of maximum likelihood. The regression model is illustrated by three real-life data sets.  相似文献   

15.
In this paper, we investigate Bayesian generalized nonlinear mixed‐effects (NLME) regression models for zero‐inflated longitudinal count data. The methodology is motivated by and applied to colony forming unit (CFU) counts in extended bactericidal activity tuberculosis (TB) trials. Furthermore, for model comparisons, we present a generalized method for calculating the marginal likelihoods required to determine Bayes factors. A simulation study shows that the proposed zero‐inflated negative binomial regression model has good accuracy, precision, and credibility interval coverage. In contrast, conventional normal NLME regression models applied to log‐transformed count data, which handle zero counts as left censored values, may yield credibility intervals that undercover the true bactericidal activity of anti‐TB drugs. We therefore recommend that zero‐inflated NLME regression models should be fitted to CFU count on the original scale, as an alternative to conventional normal NLME regression models on the logarithmic scale.  相似文献   

16.
Dependent multivariate count data occur in several research studies. These data can be modelled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula-based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.  相似文献   

17.
In this paper we consider spatial regression models for count data. We examine not only the Poisson distribution but also the generalized Poisson capable of modeling over-dispersion, the negative Binomial as well as the zero-inflated Poisson distribution which allows for excess zeros as possible response distribution. We add random spatial effects for modeling spatial dependency and develop and implement MCMC algorithms in $R$ for Bayesian estimation. The corresponding R library ‘spatcounts’ is available on CRAN. In an application the presented models are used to analyze the number of benefits received per patient in a German private health insurance company. Since the deviance information criterion is only appropriate for exponential family models, we use in addition the Vuong and Clarke test with a Schwarz correction to compare possibly non nested models. We illustrate how they can be used in a Bayesian context.  相似文献   

18.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

19.
在非寿险分类费率厘定中,泊松回归模型是最常使用的索赔频率预测模型,但实际的索赔频率数据往往存在过离散特征,使泊松回归模型的结果缺乏可靠性.因此,讨论处理过离散问题的各种回归模型,包括负二项回归模型、泊松-逆高斯回归模型、泊松-对数正态回归模型、广义泊松回归模型、双泊松回归模型、混合负二项回归模型、混合二项回归模型、Delaporte回归模型和Sichel回归模型,并对其进行系统比较研究认为:这些模型都可以看做是对泊松回归模型的推广,可以用于处理各种不同过离散程度的索赔频率数据,从而改善费率厘定的效果;同时应用一组实际的汽车保险数据,讨论这些模型的具体应用.  相似文献   

20.
Multivariate distributions are more and more used to model the dependence encountered in many fields. However, classical multivariate distributions can be restrictive by their nature, while Sarmanov's multivariate distribution, by joining different marginals in a flexible and tractable dependence structure, often provides a valuable alternative. In this paper, we introduce some bivariate mixed Sarmanov distributions with the purpose to extend the class of bivariate Sarmanov distributions and to obtain new dependency structures. Special attention is paid to the bivariate mixed Sarmanov distribution with Poisson marginals and, in particular, to the resulting bivariate Sarmanov distributions with negative binomial and with Poisson‐inverse Gaussian marginals; these particular types of mixed distributions have possible applications in, for example modelling bivariate count data. The extension to higher dimensions is also discussed. Moreover, concerning the dependency structure, we also present some correlation formulas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号